
Sidekiq Software DevelopmentManual
Release 4.17.x

Epiq Solutions

May 09, 2023

Epiq Solutions Proprietary

Contents

1 Disclaimer 1

2 Document History 2
2.1 Document Revision History . 2

3 References 8
3.1 Links . 8

4 Overview 10
4.1 Introduction . 10

4.1.1 Legal Considerations . 10
4.1.2 Proper Care and Handling . 10
4.1.3 Terms and Definitions . 11
4.1.4 Overview . 11

4.2 Sidekiq mPCIe Block Diagram . 13
4.3 Sidekiq m.2 Block Diagram . 14
4.4 Sidekiq X2 Block Diagram . 15
4.5 Sidekiq Z2 Block Diagram . 16
4.6 Sidekiq X4 Block Diagram . 18
4.7 Sidekiq Stretch (M.2-2280) Block Diagram . 19
4.8 Matchstiq Z3u Block Diagram . 20
4.9 Sidekiq NV100 Block Diagram . 21

5 Developing with libsidekiq 22
5.1 Installation Procedure . 22
5.2 Software Development Flow . 22
5.3 Tools/Libraries Needed for Linux Application Development . 23

5.3.1 GCC Toolchain . 23
5.3.2 libsidekiq Userspace Library . 23
5.3.3 Source Code Editor . 23
5.3.4 Re-Building the Sidekiq Test Applications . 23

5.4 Developing Custom Applications with libsidekiq . 26
5.4.1 Structure of an Application using libsidekiq . 26
5.4.2 Proper Header File Inclusion . 27
5.4.3 Initializing libsidekiq . 27
5.4.4 Configuring an Interface using a Handle . 30
5.4.5 Frequency Hopping . 32
5.4.6 Operation Modes . 33
5.4.7 RF Port Configuration . 34
5.4.8 I/Q Ordering Mode . 35
5.4.9 Packed Mode (Sidekiq mPCIe, m.2, and Stretch / m.2-2280 only) 35
5.4.10 Starting an Rx Interface . 36
5.4.11 Configuring a Tx Interface . 41

Contents i

Epiq Solutions Proprietary

5.4.12 Starting the Tx Interface . 43
5.4.13 Simultaneous use of Tx and Rx Interfaces . 45
5.4.14 Stopping and Releasing an Interface . 46
5.4.15 Pin Control enable of RFIC signal paths (Sidekiq X4 only) . 47
5.4.16 Clock and Time Management Resources . 47
5.4.17 Timestamp Details . 48
5.4.18 Automatic Calibration . 49
5.4.19 Receive Stream Mode . 49
5.4.20 Hotplug . 50
5.4.21 Exiting . 50
5.4.22 Critical Errors . 50

5.5 Using Libsidekiq Remotely . 50
5.5.1 Prerequisites . 51
5.5.2 Setup . 52
5.5.3 Example Usage . 53
5.5.4 Detailed Network and Port Use . 54
5.5.5 Limited Capabilities . 54

5.6 Configuring Sample Rate / Channel Bandwidth . 55
5.6.1 API Ordering Dependency . 55
5.6.2 Configuring Sample Rate / Channel Bandwidth on Multiple Handles 56
5.6.3 Sidekiq mPCIe, m.2, Stretch (m.2-2280), Z2, and Matchstiq Z3u only 56
5.6.4 Sidekiq X2 and X4 . 58
5.6.5 Sidekiq NV100 . 63

5.7 Example X4 Use Cases: Rx . 65
5.7.1 Receive: single channel, up to 200MHz IBW . 65
5.7.2 Receive: single channel, up to 400MHz IBW . 66
5.7.3 Receive: Two phase coherent channels up to 200MHz IBW . 66
5.7.4 Receive: Two independently tunable channels different sample rate* up to 200MHz IBW . . . 66

5.8 Example NV100 Use Cases: Rx . 67
5.8.1 Receive: single channel, up to 50MHz IBW . 67
5.8.2 Receive: two phase coherent channels, up to 50MHz IBW . 68
5.8.3 Receive: two independently tunable channels, same sample rate, up to 50MHz IBW 68

5.9 Sidekiq API . 68
5.10 FPGA user_app examples . 69

5.10.1 Transmitting samples from FPGA memory . 69

6 Hosts & Platforms 70
6.1 Windows Sidekiq Development . 70

6.1.1 Install the SDK . 70
6.1.2 Sidekiq Device Configuration . 74
6.1.3 Windows Development Tools . 78

6.2 Developing for Alternative Host Platforms . 80
6.2.1 Supported Architectures . 80
6.2.2 Building Test Applications . 80
6.2.3 Additional Dependencies . 83
6.2.4 Setting up Sidekiq on New Host PC . 83
6.2.5 Developing for the Matchstiq S1x and S2x . 87
6.2.6 Developing for the NVIDIA Jetson TX1/TX2/Xavier . 88
6.2.7 Developing for the Sidekiq Z2 . 89
6.2.8 Developing for the Matchstiq Z3u . 90

6.3 Assessing Throughput Performance . 91
6.3.1 Receive Performance . 92
6.3.2 Receive Performance Example . 92
6.3.3 Transmit Performance . 92

Contents ii

Epiq Solutions Proprietary

6.3.4 Transceive . 94
6.4 DKMS . 95

6.4.1 What is DKMS? . 95
6.4.2 What systems does DKMS work on? . 95
6.4.3 How is Epiq using DKMS? . 95
6.4.4 Are there any licensing requirements for using DKMS support? 95
6.4.5 How are the Epiq DKMS modules installed? . 96
6.4.6 How to check the status of the Epiq DKMS modules? . 97
6.4.7 How are the Epiq DKMS modules removed? . 97
6.4.8 How are the Epiq DKMS modules loaded? . 97

6.5 Advanced Topics . 97
6.5.1 Adjusting the DMA Ring Buffer Packet Count (Linux only) . 97
6.5.2 Configuring Sidekiq Drivers Using a Driver Configuration File 99

7 Hardware Information 100
7.1 Detailed RF Port Configuration . 100
7.2 FPGA Programming . 102

7.2.1 Transport Layer Requirements . 102
7.2.2 Updating the FPGA . 102
7.2.3 FPGA Images in Flash * . 103

7.3 Power consumption states (mPCIe, m.2) . 104
7.4 Sidekiq X4 - Methods of LO frequency tuning . 105

7.4.1 hop_on_timestamp (FPGA triggered) . 105
7.4.2 hop_immediate (software triggered) . 106
7.4.3 Standard tune . 107
7.4.4 Comparisons between tuning modes . 108

8 Errata 109
8.1 Software Errata . 109

8.1.1 Errata SW1 . 109
8.1.2 Errata SW2 . 110
8.1.3 Errata SW3 . 110
8.1.4 Errata SW4 . 111
8.1.5 Errata SW5 . 112

9 Troubleshooting 114
9.1 Troubleshooting a Sidekiq Installed in a New Host * . 114

9.1.1 Observing The LED State (Sidekiq mPCIe and Sidekiq m.2 only) 114
9.1.2 Verifying the Hardware Interfaces Detected in Linux . 114
9.1.3 Checking Kernel and Drivers . 115

9.2 Frequently Asked Questions . 116

10 Release Information 119
10.1 Known Issues / Limitations . 119

10.1.1 PCIe only functions . 119
10.1.2 USB only functions . 119
10.1.3 Limited Capabilities . 119

10.2 Release History . 120
10.2.1 v4.17.2 - 28-Feb-2022 . 121
10.2.2 v4.17.1 - 11-Feb-2022 . 122
10.2.3 v4.17.0 - 15-Oct-2021 . 122
10.2.4 v4.16.2 - 9-Sept-2021 . 123
10.2.5 v4.16.1 - 9-Jun-2021 . 124
10.2.6 v4.16.0 - 1-Jun-2021 . 124
10.2.7 v4.15.2 - 31-Mar-2021 . 125

Contents iii

Epiq Solutions Proprietary

10.2.8 v4.15.1 - 3-Mar-2021 . 126
10.2.9 v4.15.0 - 3-Feb-2021 . 126
10.2.10 v4.14.2 - 12/09/2020 . 127
10.2.11 v4.14.1 - 10/30/2020 . 128
10.2.12 v4.14.0 - 10/16/2020 . 128
10.2.13 v4.13.1 - 09/10/2020 . 130
10.2.14 v4.13.0 - 06/30/2020 . 131
10.2.15 v4.12.2 - 04/06/2020 . 132
10.2.16 v4.12.1 - 02/21/2020 . 132
10.2.17 v4.12.0 - 02/10/2020 . 133
10.2.18 v4.11.1 - 11/22/2019 . 134
10.2.19 v4.11.0 - 10/17/2019 . 134
10.2.20 v4.10.1 - 08/16/2019 . 135
10.2.21 v4.10.0 - 07/30/2019 . 136
10.2.22 v4.9.5 - 06/26/2019 . 138
10.2.23 v4.9.4 - 05/03/2019 . 138
10.2.24 v4.9.3 - 03/19/2019 . 139
10.2.25 v4.9.2 - 03/08/2019 . 139
10.2.26 v4.9.1 - 02/26/2019 . 139
10.2.27 v4.9.0 - 02/06/2019 . 140
10.2.28 v4.7.1 - 10/15/2018 . 140
10.2.29 v4.7.0 - 09/24/2018 . 141
10.2.30 v4.6.0 - 06/15/2018 . 141
10.2.31 v4.4.0 - 11/02/2017 . 142
10.2.32 v4.2.1 - 11/02/2017 . 142
10.2.33 v4.2.0 - 09/29/2017 . 143
10.2.34 v4.0.1 - 07/18/2017 . 144
10.2.35 v4.0.0 - 05/15/2017 . 144

Contents iv

Epiq Solutions Proprietary

1 Disclaimer

Epiq Solutions is disclosing this document (“Documentation”) as a general guideline for development. Epiq Solutions
expressly disclaims any liability arising out of your use of the Documentation. Epiq Solutions reserves the right, at
its sole discretion, to change the Documentation without notice at any time. Epiq Solutions assumes no obligation
to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Epiq Solutions
expressly disclaims any liability in connection with technical support or assistance that may be provided to you in
connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS IS” WITH NO WARRANTY OF ANY KIND. EPIQ SOLUTIONS
MAKES NO OTHER WARRANTIES, WHETHER EXPRESSED, IMPLIED, OR STATUTORY, REGARDING THE DOCU-
MENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL EPIQ SOLUTIONS BE LIABLE FOR ANY CON-
SEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR
LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

All material in this document is copyrighted by Epiq Solutions 2014-2021. All trademarks are property of their
respective owners.

1

Epiq Solutions Proprietary

2 Document History

2.1 Document Revision History
Date Revision Description
04/28/2014 0.1 Initial version
05/01/2014 0.2 Updates after comments
05/27/2014 0.3 Updates for SDK v0.9
06/10/2014 0.4 Updates for SDK v0.10, system update 20140606
08/18/2014 0.5 Updates for SDK v0.14, system update 20140818
10/13/2014 0.6 Updates for SDK v1.1, system update 20141013
01/09/2015 0.7 Updates for SDK v1.6, system update 20150109
09/03/2015 1.0 Updates for SDK v2.0, system update 20150908
11/03/2015 1.1 Updates for SDK v2.3, system update 20151103
03/25/2016 1.2 Updates for Matchstiq S10 platform

• Added Sections 10.5, 10.5.1, and 10.5.2
• Updates in Section 10.2 to indicate libc2.12 BUILD_CONFIG no longer

required.
• Updated for glib and deployment in Section 10.2.1

04/20/2016 1.2 Updates for SDK v3.0.0, system update v3.0.0 20160413
05/30/2016 1.3 Updates for SDK v3.0.3
06/20/2016 1.4 Updates for SDK v3.1.0
07/07/2016 1.5 Updates for SDK v3.2.0

• Migrated Appendix 6 to external document set

07/11/2016 1.5-develop Adding information regarding RF IC control output in metadata
08/04/2016 1.5-develop Updated channel bandwidth configuration
08/04/2016 1.5-develop Add information regarding blocking receive feature
08/10/2016 1.6 Generic update for v3.3.0
09/27/2016 1.6-develop RF port configuration update
09/29/2016 1.7 Miscellaneous updates for v3.4.0

Continued on next page

2

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 2.1 – continued from previous page
Date Revision Description
01/05/2017 1.8 Updates for SDK v3.5.0

• Details on USB RX streaming (new transport) and FAQ
• Details on logging function registration
• Details on ref_clock test application and FAQ
• Removed references to manual RFIC initialization as it now takes place

during skiq_init() call.
• Added to list of supported Linux kernels
• Added reference to mxSidekiq, a MATLAB extension for controlling

Sidekiq and transferring data with Sidekiq

05/08/2017 2.0 Updates for SDK v4.0.0
• Updates for libusb and deployment in Section 10.2.1
• skiq_init() and other general v4.0.0 updates
• Updated section 9.10 for skiq_receive() and new skiq_rx_block_t type

definition
• Updated section 9.13 for skiq_transmit() and new skiq_tx_block_t type

definition
• Updated Tables 6 and 7 with new supported kernel versions which in-

clude 4.8 and 4.10 series kernels
• Added accessing performance appendix

06/27/2017 2.1 Adding preliminary Sidekiq X2 details
09/22/2017 2.2 Updates for SDK v4.2.0

• Details on supported Sidekiq power consumption states in Appendix 9
• Updated Tables 6 and 7 with new supported kernel versions which in-

clude 4.11 and 4.12 series kernels
• Updated Sidekiq X2 diagram

02/14/2018 2.3 Updates for SDK v4.4.0
• Added details on Sidekiq X2 Sample Rate / Bandwidth Settings
• Updated Sidekiq mPCIe and m.2 Channel Bandwidth settings
• Corrected Rx IQ Packet Structure in Figure 5
• Section 10.2.1: Added compiler flags for BUILD_CONFIGs:

aarch64.gcc6.3 and arm_cortex-a9.gcc4.9.2_gnueabi
• Added Section 9.10.3: Using receive calibration offsets
• Updated supported kernel versions in Tables 7 and 8
• Added Section 10.6 Developing for the NVIDIA Jetson TX1/TX2
• Added Appendix 10 – Windows Sidekiq Development

Continued on next page

2.1. Document Revision History 3

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 2.1 – continued from previous page
Date Revision Description
06/13/2018 2.4-develop Updates for SDK v4.6.0

• Fixed tables in Appendix 1
• Added more details on FPGA programming in Appendix 4
• Added Section 9.7: RF Port Configuration
• Added Section 9.16.1 to describe new API functions for working with

multiple handles when starting and stopping receive streaming
• Added Section 9.19 on TX quadrature calibration details
• Added Section 9.20 on Receive Stream Mode details
• Added Section 10.7: Developing for the Sidekiq Z2
• Updated supported kernel versions in Tables 7 and 8. Added a lot more

driver support for CentOS distributions.
• Added introduction to Windows support in Appendix 10: Windows 10 is

now supported. Sidekiq X2 is also supported.
• Added details regarding new TX timestamps allowed late mode
• Added appendix for detailed RF port configuration

06/15/2018 2.4 Finalize updates for SDK v4.6.0
09/21/2018 2.5-develop Updates for SDK v4.7.0

• Added Balanced mode description to Section 9.20
• Added preliminary Sidekiq X4 details
• Added details on 1PPS source selection
• Added details on additional reference clock configuration
• Updated X2 Architecture Diagram
• Updated supported kernel versions in Tables 7 and 8
• Added section 9.10.4 on using I/Q phase and amplitude calibration

09/24/2018 2.5 Finalize updates for SDK v4.7.0
01/30/2019 2.6-develop Updates for SDK v4.9.0

• Updated Sidekiq X4 Architecture Diagram
• Added details on new Sidekiq X2 profiles
• Added details on creating/loading runtime profile for Sidekiq X2
• Added RFIC control output details for Sidekiq X2 and Sidekiq X4
• Updated support kernel versions in Tables 7 and 8 - Added support for

NVIDIA Jetson platforms (JetPack / L4T)
• Updated Section 14.2 to include information about Annapolis Micro Sys-

tems’ WILDSTAR FMC Carrier

02/05/2019 2.6 Finalize updates for SDK v4.9.0
Continued on next page

2.1. Document Revision History 4

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 2.1 – continued from previous page
Date Revision Description
07/25/2019 2.7 Updates for SDK v4.10.0

• Table 3: SDK Tarball Files, update to include
tx_samples_from_FPGA_RAM

• Add Section 9.8: include information for adjusting the ordering complex
samples (I/Q) for both TX/RX

• Section 9.12.1: Include text on special case for dual channel transmit and
the TX FIFO size limit

• Section 10.2.1: Add compiler flags for BUILD_CONFIG: arm_cortex-
a9.gcc7.2.1_gnueabihf

• Tables 7 and 8: update supported kernel versions
• Section 11.1.3: Fixed typo in decimation factor example
• Section 11.2.1.1: Add section to discuss Options for Sample Decimation

(in X2 and X4)
• Section 20.4: add subsections to discuss MinGW-64 versus Visual Studio

usage
• Table 14: RF Port Mapping, update Sidekiq X4 C1/D1 entries
• Appendix 12 – FPGA user_app examples, added Section 22.1: Transmit-

ting samples from FPGA memory
• Appendix 13 – Release History, update release notes for v4.9.1 through

v4.9.5 and v4.10.0
• Added Frequency Hopping section 9.5.1

10/15/2019 2.8 Updates for SDK v4.11.0
• Transition to using Sphinx for documentation, revision history references

no longer apply
• Add new product information for Sidekiq Stretch (M.2-2280)

02/03/2020 2.9 Updates for SDK v4.12.0
• Update supported kernel versions
• Add subsection on “FPGA Configuration Flash Slots”

06/30/2020 2.10 Updates for SDK v4.13.0
• Update supported kernel versions
• Add subsection on “Sidekiq X4 - Methods of LO frequency tuning”
• Add note regarding Sidekiq X4 and TxA1/TxB1 transmit capability
• Update section on “Dynamic Use of Sidekiq Cards”
• Update code example for Frequency Hopping
• Added RX Calibration to “Automatic Calibration”
• Add FAQ regarding timestamp slips within products using the AD9361

RFIC

Continued on next page

2.1. Document Revision History 5

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 2.1 – continued from previous page
Date Revision Description
10/13/2020 2.11 Updates for SDK v4.14.0

• Update supported kernel versions
• Add information on new exit handler in the “Exit” section of “Developing

Apps”
• Add “Hotplug” section to “Developing Apps”
• Update “Clock and Time Management Resources” section of “Developing

Apps” to expand on reference clock switching
• Update information on sample rate/tuning function call order
• Add Sidekiq X4 specific section “Pin Control enable of RFIC signal paths”
• Update “Configuring Sample Rate / Channel Bandwidth” with more in-

formation on generating profiles for Sidekiq X4

2/3/2021 2.12 Updated for SDK v4.15.0
• Update supported kernel versions
• Add “Advanced Topics” section to “Hosts & Platforms”
• Update “Clock and Time Management Resources” section of “Developing

Apps” to include information on the use of the GPSDO in Sidekiq Stretch
(m.2-2280)

• Add Matchstiq Z3u details
• Add “Example X4 Use Cases” section to demonstrate typical Rx usage

scenarios
• Add “DKMS” section describing how DKMS is used with Sidekiq kernel

modules
• Update “Detailed RF Port Configuration” section
• Update “Sidekiq X4 Built-in Profiles” section

5/28/2021 2.13 Updated for SDK v4.16.0
• Add “Using Libsidekiq Remotely” section describing the network trans-

port (currently Z3u & Z2 only)
• Add “Tx Timestamp Clock Source selection” section to “Developing Apps”
• Update “Clock and Time Management Resources” section to include

Matchstiq Z3u details
• Update Sidekiq X4 diagram
• Update “Number of Filter Taps” table for AD9631/4 parts in “Configuring

Sample Rate / Channel Bandwidth”
• Update code examples in “Developing Apps”

10/14/2021 2.14 Updated for SDK v4.17.0
• Add Sidekiq NV100 details
• Correct filter line-up for last entry in the Decimation / Interpolation Fac-

tor table
• Add “Analog Filtering” section describing how to override the analog fil-

tering settings on AD936x-based products
• Update supported kernel versions
• Add read_gpsdo.c to the list of included example apps
• Add paragraph in the “Clock and Time Management Resources” section

describing how some Sidekiq products support changing the reference
clock frequency at run-time with the libsidekiq API

• Updated the network transport’s unsupported API functions
• Add SW4 and SW5 Errata

Continued on next page

2.1. Document Revision History 6

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 2.1 – continued from previous page
Date Revision Description
3/07/2022 2.15 Updated for SDK v4.17.2

• Update supported kernel versions
• Add table listing NV100 supported Rx bandwidth percentages
• Add note regarding NV100 sample rate dead-zones and a reference to the

ADRV9001 User’s Guide
• Fix incorrect tx_hdl listed in the RF port mapping for NV100
• Update SW5 Errata to indicate resolution in FPGA v3.16.1
• Correct X4 Tx sample rates table, removing C1/D1 and add a note for

configuring Rx handles at rates >= 200Msps

2.1. Document Revision History 7

Epiq Solutions Proprietary

3 References

3.1 Links
[1] Epiq Solutions Website

https://www.epiqsolutions.com

[2] Xilinx Website for the Spartan 6 FPGA

http://www.xilinx.com/support/documentation/spartan-6.htm

[3] GCC Website

http://gcc.gnu.org

[4] Cypress Website for FX2

https://www.infineon.com/cms/en/product/universal-serial-bus-usb-power-delivery-controller/
peripheral-controllers/ez-usb-fx2lp/

[5] Epiq Solutions Support Website

https://support.epiqsolutions.com

[6] Sidekiq Hardware User’s Manual

https://support.epiqsolutions.com/viewforum.php?f=119

[7] Sidekiq GNU Radio Support

https://github.com/epiqsolutions/gr-sidekiq

[8] Sidekiq System Updates

https://support.epiqsolutions.com/viewforum.php?f=125

[9] AD9361 Reference Manual UG-570

http://www.analog.com/media/en/technical-documentation/user-guides/AD9361_Reference_Manual_
UG-570.pdf

[10] AD9371 User Guide (UG-992)

https://form.analog.com/Form_Pages/Catalina/CatalinaDesign.aspx?prodid=AD9371

(Registration Required)

[11] ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual (UG-1295)

https://form.analog.com/Form_Pages/Catalina/CatalinaDesign.aspx?prodid=ADRV9009

(Registration Required)

[12] Xilinx Website for the Artix 7 FPGA

8

https://www.epiqsolutions.com
http://www.xilinx.com/support/documentation/spartan-6.htm
http://gcc.gnu.org
https://www.infineon.com/cms/en/product/universal-serial-bus-usb-power-delivery-controller/peripheral-controllers/ez-usb-fx2lp/
https://www.infineon.com/cms/en/product/universal-serial-bus-usb-power-delivery-controller/peripheral-controllers/ez-usb-fx2lp/
https://support.epiqsolutions.com
https://support.epiqsolutions.com/viewforum.php?f=119
https://github.com/epiqsolutions/gr-sidekiq
https://support.epiqsolutions.com/viewforum.php?f=125
http://www.analog.com/media/en/technical-documentation/user-guides/AD9361_Reference_Manual_UG-570.pdf
http://www.analog.com/media/en/technical-documentation/user-guides/AD9361_Reference_Manual_UG-570.pdf
https://form.analog.com/Form_Pages/Catalina/CatalinaDesign.aspx?prodid=AD9371
https://form.analog.com/Form_Pages/Catalina/CatalinaDesign.aspx?prodid=ADRV9009

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

[13] Xilinx Website for the Kintex Ultrascale FPGA

https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html

[14] Annapolis Micro System WILDSTAR WB3XZD Baseboard (Discontinued)

https://www.annapmicro.com/products/wildstar-ultrakvp-zp-dram-3u-openvpx

[15] ADRV9001 System Development User Guide (UG-1828)

https://www.analog.com/media/en/technical-documentation/user-guides/
adrv9001-system-development-user-guide-ug-1828.pdf

3.1. Links 9

https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
https://www.annapmicro.com/products/wildstar-ultrakvp-zp-dram-3u-openvpx
https://www.analog.com/media/en/technical-documentation/user-guides/adrv9001-system-development-user-guide-ug-1828.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/adrv9001-system-development-user-guide-ug-1828.pdf

Epiq Solutions Proprietary

4 Overview

4.1 Introduction
This document provides the details required to enable a software developer to develop Linux software applications
that will utilize the Sidekiq SDR. The following topics will be discussed:

• Overview of the software architecture of Sidekiq

• Acquiring the prerequisites for developing software applications, including the GCC compiler, the libsidekiq
Linux userspace library, and a text editor for source code editing

• Building and downloading the suite of test applications that are shipped with each Sidekiq PDK

• Development of custom applications that use libsidekiq

• Reference documentation for libsidekiq

All documentation and support for Sidekiq is provided through Epiq Solutions’ support website, which can be found
at:

https://support.epiqsolutions.com

Please note that it is necessary to register prior to accessing the relevant information for your purchase.

4.1.1 Legal Considerations
The Sidekiq is distributed all over the world. Each country has its own laws governing reception and transmission of
radio frequencies. The user of the Sidekiq and associated software is solely responsible for insuring that it is used in
a manner consistent with the laws of the jurisdiction in which it is used. Many countries, including the United States,
prohibit the transmission and reception of certain frequency bands, or receiving certain transmissions without proper
authorization. Again, the user is solely responsible for the user’s own actions.

4.1.2 Proper Care andHandling
The Sidekiq unit is fully tested by Epiq Solutions before shipment, and is guaranteed functional at the time it is
received by the customer, and ONLY AT THAT TIME. Improper use of the Sidekiq unit can cause it to become non-
functional. In particular, a list of actions that may cause damage to the hardware include the following:

• Handling the unit without proper static precautions (ESD protection) when the housing is removed or opened
up

• Connecting a transmitter to the RX port without proper attenuation – A max input of -10 dBm is recommended

• Executing custom software and/or an FPGA bitstream that was not developed according to guidelines

The above list is not comprehensive, and experience with the appropriate measures for handling electronic devices
is required.

10

https://support.epiqsolutions.com

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

4.1.3 Terms andDefinitions
Term Definition
1PPS 1 Pulse Per Second
A/D Analog to Digital converter
API Application Program Interface
CPU Central Processing Unit
D/A (DAC) Digital to Analog converter
dB Decibel
DKMS Dynamic Kernel Module Support
DMA Direct Memory Access
DSP Digital Signal Processor
ERA Epiq RF Analyzer
FDD Frequency Division Duplex
FIFO First In, First Out
FPGA Field Programmable Gate Array
GCC GNU Compiler Collection
GHz Gigahertz
GPS Global Positioning System
GPSDO GPS Disciplined Oscillator
IP Internet Protocol
I/Q In-Phase / Quadrature Phase
kHz Kilohertz
MHz Megahertz
Msps Mega samples per second
PC Personal Computer
PCIe Peripheral Component Interconnect express
PDK Platform Development Kit
PL Programmable Logic
PLL Phase Locked Loop
ppm Parts Per Million
PS Processing System
RAM Random Access Memory
RF Radio Frequency
RF IC Radio Frequency Integrated Circuit
Rx Receive
SCP Secure CoPy
SDK Software Development Kit
SDR Software Defined Radio
SRFS System RF Server
SSH Secure SHell
TCVCXO Temperature Compensated Voltage Controlled Crystal Oscillator
TDD Time Division Duplex
Tx Transmit
USB Universal Serial Bus

4.1.4 Overview
The Sidekiq SDR is a miniature software defined radio platform in the form of a standards compliant miniPCIe, m.2
(both 3042 and 2280), or FMC card. These form factors provide the potential for a wide variety of host systems
with various processors. For clarity, the remainder of this document covers building applications for the Sidekiq PDK

4.1. Introduction 11

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

system except when otherwise specified.

Software Architecture
A Sidekiq system consists of a Sidekiq miniPCIe, m.2, or FMC card inserted into a Linux or Windows host platform
supporting the Sidekiq form factor. Additionally, the Sidekiq Z2 consists of a Zynq 7010, which is a self contained
embedded ARM processor running Linux and Xilinx FPGA in the mPCIe form factor. The Matchstiq Z3u is a fully
housed software defined radio consisting of the Zynq Ultrascale+, running Linux and Xilinx FPGA, a wideband
transceiver, and an integrated GPS. The Sidekiq miniPCIe or m.2 card combines a Xilinx FPGA and Cypress USB
microcontroller to provide a complete SDR system accessible to the host platform through PCIe and/or USB. The
Cypress USB microcontroller is the FX2 [4] (page 8). For the miniPCIe variant of Sidekiq, the FPGA is a Xilinx
Spartan 6 LX45T FPGA [2] (page 8). For both of the m.2 variants of Sidekiq (traditional, Stretch, and NV100),
the FPGA is a Xilinx Artix 7 XC7A50T FPGA [12] (page 8). For the Sidekiq FMC card, referred to as Sidekiq X2 or
Sidekiq X4, a FPGA carrier card in the form of the Kintex Ultrascale (KU060 and KU115) [13] (page 8) is installed in
a Thunderbolt 3 chassis for a PDK is provided. This chassis uses the Thunderbolt 3 interface of a laptop to provide
access to the Sidekiq FMC card. As of Q1 2019, the Sidekiq X2 and Sidekiq X4 are also supported in the Annapolis
Micro Systems’ WILDSTAR baseboard (WB3XZD) [14] (page 8) for use in an OpenVPX system.

A Sidekiq signal processing application consists of a userspace software application running on the host platform,
which links against a userspace library called libsidekiq (as shown in following architecture figures). The libsidekiq
library provides an API for configuring various RF and baseband parameters, access to various peripherals (temper-
ature sensor, accelerometer, etc), as well as an interface for transferring data between the CPU and the FPGA. This
data is typically digitized baseband I/Q samples. Full details of the libsidekiq library can be found in Sidekiq API
(page 68).

4.1. Introduction 12

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.2 SidekiqmPCIe Block Diagram

Fig. 4.1: Sidekiq mPCIe block diagram showing how libsidekiq + user applications fit in the system

4.2.SidekiqmPCIeBlockDiagram
13

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.3 Sidekiqm.2 Block Diagram

Fig. 4.2: Sidekiq m.2 block diagram showing how libsidekiq + user applications fit in the system

4.3.Sidekiqm.2BlockDiagram
14

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.4 Sidekiq X2 Block Diagram

Fig. 4.3: Sidekiq X2 block diagram showing how libsidekiq + user applications fit in the system

4.4.SidekiqX2BlockDiagram
15

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.5 Sidekiq Z2 Block Diagram

Fig. 4.4: Sidekiq Z2 block diagram showing how libsidekiq + user applications fit in the system

4.5.SidekiqZ2BlockDiagram
16

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.5.SidekiqZ2BlockDiagram
17

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.6 Sidekiq X4 Block Diagram

Fig. 4.5: Sidekiq X4 block diagram showing how libsidekiq + user applications fit in the system

4.6.SidekiqX4BlockDiagram
18

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.7 Sidekiq Stretch (M.2-2280) Block Diagram

Fig. 4.6: Sidekiq Stretch block diagram showing how libsidekiq + user applications fit in the system

4.7.SidekiqStretch(M.2-2280)BlockDiagram
19

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.8 Matchstiq Z3u Block Diagram

Fig. 4.7: Matchstiq Z3u block diagram showing how libsidekiq + user applications fit in the system

4.8.MatchstiqZ3uBlockDiagram
20

Epiq
Solutions

Proprietary
SidekiqSoftwareDevelopmentManual,Release4.17.x

4.9 Sidekiq NV100 Block Diagram

Fig. 4.8: Sidekiq NV100 block diagram showing how libsidekiq + user applications fit in the system

4.9.SidekiqNV100BlockDiagram
21

Epiq Solutions Proprietary

5 Developingwith libsidekiq

5.1 Installation Procedure
The installation procedure installs both the SDK and the image directory to the install directory specified. The image
directory contains: drivers, initialization scripts, and a link to prebuilt applications stored in the SDK. The SDK
directory contents are depicted in the Linux Sidekiq SDK Tarball Directories (page 24) and Linux Sidekiq SDK Tarball
Files (page 25) tables.

In addition to the image and SDK directories, updates are made to the Linux installation to automatically load
necessary device driver for the Sidekiq card, support real-time priority threads by a Sidekiq user, and support the
Sidekiq USB interface.

To initialize Sidekiq, a systemd-service or initscript (based upon the Linux distribution in use) is installed and enabled.

To support realtime priority threads by a Sidekiq user, a configuration file to allow realtime priorities is placed in
/etc/security/limits.d/99-sidekiq_limits.conf.

To support a Sidekiq’s USB interface, available on mPCIe and M.2-3042, a udev rules file is installed at /etc/udev/
rules.d/99-sidekiq.rules.

As of libsidekiq v4.15.0, DKMS support is available for all Sidekiq kernel modules; see the DKMS (page 95) section
for more information on what DKMS provides and how it may be used.

5.2 Software Development Flow
The software development flow for a Sidekiq system is similar to developing software applications for any Linux-
based system. The general flow is described below.

Note: This development flow assumes that a user is developing software on the laptop delivered with the Sidekiq
PDK

• Develop the source code for the custom software application on a PC such as the Sidekiq PDK laptop, using a
text editor of choice (emacs, vi, gedit, etc.)

• Compile and link the source code that makes up the custom software application using the GCC toolchain. This
includes linking the custom application against the appropriate libsidekiq userspace library that provides the
API to access the RF transceiver hardware. For example, if a user is developing an application to execute on the
Sidekiq PDK laptop, which has an Intel x86 CPU and a 64-bit Linux OS installed, then the libsidekiq__x86_64.
gcc.a userspace library would be linked against. This process will output a binary executable file that will run
on Linux on the Sidekiq PDK laptop. For details on compiling for alternative host platforms, refer to Developing
for Alternative Host Platforms (page 80). For details on developing for Windows, refer to Windows Sidekiq
Development (page 70).

22

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

• Execute the custom application on the Sidekiq system.

5.3 Tools/Libraries Needed for Linux Application Development
The following section provides an outline of all prerequisites needed to develop Linux-based software applications
that execute on Sidekiq PDK laptop. For details on building on a Windows-based system, refer to Windows Sidekiq
Development (page 70).

5.3.1 GCC Toolchain
The GNU Compiler Collection (GCC) toolchain [3] (page 8) provides a robust and widely used set of tools that can
be used for building software applications for a variety of different target platforms. The GCC toolchain includes
many different software components, including the appropriate C/C++ pre-processor, C/C++ compiler, linker, and
other components needed as part of the building process.

The Sidekiq PDK laptop comes with the appropriate GCC toolchain pre-installed.

5.3.2 libsidekiq Userspace Library
The libsidekiq userspace library provides a high-level API for configuring the RF transceivers and transferring data
between the CPU and the FPGA. This library is provided as a static library (e.g. libsidekiq__x86_64.gcc.a), such
that a software application would link against this library as part of the software build process.

The current version of the libsidekiq userspace library can be downloaded at [5] (page 8) as part of the Sidekiq
SDK. The complete documentation for the API provided by this library can be found as a separate document at [5]
(page 8).

5.3.3 Source Code Editor
A standard text editor is used for editing the C/C++ source code that make up a Sidekiq software application. Most
host PC Linux distributions ship with a variety of text editors already installed, including emacs, vi, gedit, and others;
any text editor can be used for developing software applications for Sidekiq.

5.3.4 Re-Building the Sidekiq Test Applications
Each Sidekiq system ships with a suite of test applications installed in the /home/sidekiq/sidekiq_image_current
directory (by default). These applications provide a means to demonstrate various features in the hardware, including
receiving I/Q samples from the RF receivers, (re)programming the FPGA and reading sensors in the system such as
the temperature sensor and accelerometer (if present).

A tarball containing the source code for the latest versions of these test applications, as well as the Makefile required
to build them, can be found at Epiq Solutions’ support website [5] (page 8). A Windows SDK for development under
Windows is also available at Epiq Solutions’ support website [5] (page 8). Assuming the GCC compiler has been
downloaded and installed, the steps for re-building these applications for Linux are as follows:

1. Download the latest Sidekiq SDK tarball from [5] (page 8) to the Sidekiq PDK laptop. These tarballs have a
version string in their filename. For example, version 4.17.x of the Sidekiq SDK tarball will be called:

sidekiq_sdk_v4.17.x.tar.xz

2. Untar the Sidekiq SDK tarball to a working directory on the Sidekiq PDK laptop. For example: if the develop-
ment directory is located at /home/sidekiq/, the following command would be used to extract its contents:

5.3. Tools/Libraries Needed for Linux Application Development 23

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

$ tar xf /home/sidekiq/sidekiq_sdk_v4.17.x.tar.xz

3. Once the untar operation has been completed, the tarball’s contents are available in the current working direc-
tory.

4. To re-build the test applications, change directories to the test_apps directory and run make.

$ cd /home/sidekiq/sidekiq_sdk_v4.17.x/test_apps
$ make BUILD_CONFIG=x86_64.gcc clean
$ make BUILD_CONFIG=x86_64.gcc

This will cause a complete re-build of all of the Sidekiq test applications, with the resultant binary executable files
located in the .../test_apps/bin/ directory. The applications built can be executed directly on the Sidekiq laptop
just like any other Linux application. Most test applications can be executed without any command line arguments,
and will report their expected usage. A user may use the –help command line argument to force the display of
available arguments.

Note: The prebuilt applications and device drivers for alternative host systems (non-x86_64) can be obtained from
[8] (page 8).

Table 5.1: Linux Sidekiq SDK Tarball Directories

sidekiq_sdk_vX.Y.Z
|-- arg_parser
| |-- inc
| `-- lib
|-- custom_xport_bare
| |-- bin
| |-- src
| `-- test_apps
| `-- src
|-- doc
| |-- api
| | `-- html
| |-- manual
| `-- sdk_manual
| `-- html
|-- lib
|-- prebuilt_apps
|-- sidekiq_core
| `-- inc
`-- test_apps
|-- bin
`-- src

5.3. Tools/Libraries Needed for Linux Application Development 24

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.2: Linux Sidekiq SDK Tarball Files

sidekiq_sdk_vX.Y.Z/arg_parser/
|-- inc
| `-- arg_parser.h
`-- lib

`-- arg_parser__<BUILD_CONFIGs>.a

sidekiq_sdk_vX.Y.Z/custom_xport_bare/
|-- Makefile
|-- src
| `-- my_custom_xport.c
|-- test_apps
| `-- src
| `-- version_test.c
`-- tools.mk

sidekiq_sdk_vX.Y.Z/sidekiq_core/
`-- inc
|-- sidekiq_api.h
|-- sidekiq_params.h
|-- sidekiq_types.h
|-- sidekiq_xport_api.h
`-- sidekiq_xport_types.h

sidekiq_sdk_vX.Y.Z/doc/
|-- api
|-- manuals
`-- sdk_manual

sidekiq_sdk_vX.Y.Z/lib/
|-- libsidekiq__<BUILD_CONFIGs>.a
`-- support

`-- <BUILD_CONFIGs>/*

Continued on next page

5.3. Tools/Libraries Needed for Linux Application Development 25

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.2 – continued from previous page

sidekiq_sdk_vX.Y.Z/prebuilt_apps/
`-- x86_64.gcc
|-- app_src_file1
|-- check_fpga_config
|-- fdd_rx_tx_samples
|-- multicard_dynamic_enable
|-- multicard_rx_samples
|-- multicard_tx_samples
|-- prog_fpga
|-- read_accel
|-- read_gpsdo
|-- read_modules
|-- read_temp
|-- ref_clock
|-- rx_benchmark
|-- rx_samples
|-- rx_samples_freq_hopping
|-- rx_samples_minimal
|-- rx_samples_on_trigger
|-- set_rx_LO_freq
|-- sidekiq_probe
|-- store_user_fpga
|-- sweep_receive
|-- tdd_rx_tx_samples
|-- test_golden_present
|-- test_sample_rate
|-- tx_benchmark
|-- tx_configure
|-- tx_samples
|-- tx_samples_async
|-- tx_samples_from_FPGA_RAM
|-- tx_samples_on_1pps
|-- user_reg_test
|-- version_test
`-- xcv_benchmark

sidekiq_sdk_vX.Y.Z/test_apps/
|-- Makefile
|-- src
| |-- app_src_file1.c
| |-- elapsed.h
| |-- fdd_rx_tx_samples.c
| |-- multicard_dynamic_enable.c
| |-- multicard_rx_samples.c
| |-- multicard_tx_samples.c
| |-- prog_fpga.c
| |-- read_accel.c
| |-- read_gpsdo.c
| |-- read_imu.c (applicable to Z2 rev C)
| |-- read_temp.c
| |-- rx_benchmark.c
| |-- rx_samples.c
| |-- rx_samples_freq_hopping.c
| |-- rx_samples_minimal.c
| |-- rx_samples_on_trigger.c
| |-- set_rx_LO_freq.c
| |-- sidekiq_probe.c
| |-- store_user_fpga.c
| |-- sweep_receive.c
| |-- tdd_rx_tx_samples.c
| |-- test_golden_present.c
| |-- tx_benchmark.c
| |-- tx_configure.c
| |-- tx_samples_async.c
| |-- tx_samples.c
| |-- tx_samples_from_FPGA_RAM.c
| |-- tx_samples_on_1pps.c
| |-- user_reg_test.c
| |-- version_test.c
| `-- xcv_benchmark.c
`-- tools.mk

5.4 Developing CustomApplications with libsidekiq
The Sidekiq SDK enables a user to develop their own software applications that utilizes a Linux userspace library
called libsidekiq. This library provides a high-level API for configuring the RF transceiver, as well as transferring
digitized baseband I/Q samples between the CPU and the FPGA.

5.4.1 Structure of an Application using libsidekiq
The .../test_apps/src/ directory found in the Sidekiq SDK tarball (currently sidekiq_sdk_v4.17.x.tar.xz) con-
tains the source code for several example applications that utilize libsidekiq. Applications utilizing libsidekiq should
generally follow some basic guidelines to ensure they operate properly. These guidelines are outlined below.

The general structure of a custom application should follow the template laid out in the .../sidekiq_sdk_v4.17.x/
test_apps/ directory. This provides an example of a Makefile, as well as a directory to hold source files, header files
(inc), and output binary executable files (bin). It is certainly possible to use a different directory/file structure here,

5.4. Developing CustomApplications with libsidekiq 26

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

but the included Makefile is set up to support this structure already. In addition, the app_src_file1.c (located in
.../test_apps/src/) source file contains the majority of the typical structure found in a Sidekiq radio application.

5.4.2 Proper Header File Inclusion
The entire libsidekiq API is exposed through a single header file called sidekiq_api.h. This header file can be found
at:

.../sidekiq_sdk_v4.17.x/sidekiq_core/inc/sidekiq_api.h

Any application that utilizes libsidekiq will need to include the sidekiq_api.h header file in order to access the
provided services. This is the only header file that is required to be included.

There are four support header files, three of which are included indirectly by sidekiq_api.h. These
are sidekiq_types.h, sidekiq_params.h, and sidekiq_xport_types.h. The fourth support header file is
sidekiq_xport_api.h and is used by custom transport developers when implementing registration of a custom trans-
port. This header file is found in the same location as sidekiq_api.h:

.../sidekiq_sdk_v4.17.x/sidekiq_core/inc/sidekiq_xport_api.h

5.4.3 Initializing libsidekiq
The libsidekiq library supports use of one or more Sidekiq cards in a single host system. Each Sidekiq card can utilize
either the PCIe interface, the USB interface, or a custom defined interface for transport between the host platform and
the Sidekiq card. Automatic detection of the interface is supported. The skiq_init() function is used to initialize the
RFIC, initialize the libsidekiq library, reserve the resources required for the specified Sidekiq card(s), and initialize
the communication transport. Inserting the kernel modules are required prior to accessing a Sidekiq card when
using a PCIe transport. This is handled automatically on the PDK laptop and is performed by the initialization script
described in Installation Procedure (page 22).

If it is desired to query how many Sidekiq cards are detected by the host platform and the mapping of Sidekiq
card (based on serial number) to card number in the system prior to reserving the cards, the following sequence of
libsidekiq calls may be made:

uint8_t number_of_cards = 0;
uint8_t card_list[SKIQ_MAX_NUM_CARDS];
uint8_t card_num = 0;
uint8_t i = 0;
char *serial_str;

/* query the list of all Sidekiq cards on the PCIe interface */
skiq_get_cards(skiq_xport_type_pcie, &number_of_cards, card_list);

for (i = 0; i < number_of_cards; i++)
{

/* determine the serial number based on the card number */
skiq_read_serial_string(card_list[i], &serial_str);
printf("Sidekiq card number %u has serial number %s\n", card_list[i], serial_str);

/* determine the card number based on the serial number */
skiq_get_card_from_serial_string(serial_str, &card_num);
printf("Sidekiq serial number %s is located at card number %u\n",

serial_str, card_num);
}

A card can only be used by a single application at any point in time. To determine a card’s availability, the
skiq_is_card_avail() API should be used. If the card is already in use, the process ID of the application using

5.4. Developing CustomApplications with libsidekiq 27

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

the card is provided. When skiq_init() is called for a specific card, the card is reserved for use by that application
and other applications are denied access to the locked card.

To perform the initialization of libsidekiq, the skiq_init() function should be called specifying the cards to use and
the initialization level.

Note: As of libsidekiq v4.8.0, specification of the transport interface is deprecated and that skiq_xport_type_auto
is always used regardless of what is specified. The example below illustrates how to initialize two cards for full RF
functionality.

uint8_t num_cards = 2;
uint8_t cards[num_cards] = {0, 1};
skiq_xport_type_t type = skiq_xport_type_auto;
skiq_xport_init_level_t level = skiq_xport_init_level_full;

/* initialize libsidekiq for card numbers 0 and 1 */
skiq_init(type, level, cards, num_cards);

The initialization level specifies how much initialization should be performed for each of the interfaces. Any appli-
cation interested in streaming sample data or configuring the RF radio properties should perform a full initialization
by specifying the level as skiq_xport_init_level_full.

The skiq_init() function also initializes three mutexes per Sidekiq card provided internally by libsidekiq: one mutex
is used to control access to FPGA registers, another mutex is used to protect access to the FPGA → CPU interface
used for receiving I/Q samples, and a third mutex is used to protect access to the CPU → FPGA interface used for
transmitting I/Q samples. This allows a multi-threaded host application to access the various libsidekiq services,
while ensuring that calls to libsidekiq are thread-safe.

Note: Running multiple applications that utilize libsidekiq is supported as long as each instance of libsidekiq is using
a different Sidekiq card. Applications using the same Sidekiq card cannot be executed at the same time.

Lastly, as part of the initialization process, a signal handler should be installed for capturing SIGINT signals that may
occur. Graceful shutdown should be performed, including stopping any active streaming and calling skiq_exit().
Note that the stop streaming and exit calls should not be made within the context of the signal handler as those calls
attempt to lock a mutex which may already be locked if a receive or transmit call is in progress prior to the handling
of the signal. A recommended approach to handle the signal is to set a flag which the main application checks to see
if it should continue to run. Upon the clearing of the “run flag”, the application should cleanup and call skiq_exit().
See the tx_samples.c test application for an example of this.

Dynamic Use of Sidekiq Cards
libsidekiq v4.9.0 adds the ability for an application to dynamically enable or disable use of Sidekiq cards indepen-
dent of the library initialization performed via the skiq_init() API function. The skiq_init_without_cards() API
function may be used to initialize the library without reserving any card for immediate use; this is the equivalent of
calling skiq_init() with an empty card list.

At a later point during the application’s execution, a card can be initialized and enabled for use through either the
skiq_enable_cards() or the skiq_enable_cards_by_serial_str() API function. This will perform a full initializa-
tion of the card and reserve the card’s use to the requesting application. At a later point in time, if the card is no
longer needed by the application, the card can be released using the skiq_disable_card() API. This shuts down the
card, and this card is the considered available for use by either the same or another application. Calling skiq_exit()
performs a full shutdown of the library as well as any card currently reserved by the application. There is no need to
perform an additional call to skiq_disable_card() prior to calling skiq_exit().

5.4. Developing CustomApplications with libsidekiq 28

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

A simple example (without error checking) of accessing cards dynamically could be:

uint8_t num_cards = 0;
uint8_t cardList[SKIQ_MAX_NUM_CARDS] = { 0 };

/* Initialize libsidekiq with no cards - none are needed right now */
skiq_init_without_cards();

/* Do some tasks */
...

/* A Sidekiq card is now needed; dynamically enable card 0 */
cardList[0] = 0;
num_cards = 1;
skiq_enable_cards(cardList, num_cards, skiq_xport_init_level_full);

/* Perform some radio tasks */
...

/* Done with the card; dynamically disable card 0 */
cardList[0] = 0;
num_cards = 1;
skiq_disable_cards(cardList, num_cards);

/* Perform some cleanup tasks */
...

/* Shutdown libsidekiq */
skiq_exit();

The test application multicard_dynamic_enable.c provides a basic example of dynamically enabling or disabling a
card for use by the application.

Logging
By default, libsidekiq executes any logging of the library with syslog. The default configuration is to display any
logging message to both the console as well as within /var/log/syslog. A user can utilize their own logging function
by registering their own logging function pointer with the skiq_register_logging() API function. Refer to the
app_src_file1.c test application for an example of this. If the user is interested in completely disabling any logging
or prints within the Sidekiq library, NULL can be provided to skiq_register_logging().

Transport Layer
Within libsidekiq, there is the concept of a “transport” (or xport) layer. This layer facilitates I/O between a Sidekiq
card and host, such as configuring radio parameters via register transactions and streaming I/Q samples. Sidekiq’s
hardware by default is configured to implement PCIe and requires only that software be initialized in the manner
as described above. The Sidekiq mPCIe and m.2 radios additionally have an available USB transport; making use of
this transport is only recommended for use in systems where PCIe is not feasible, as the USB transport is significantly
less performant when streaming samples and transacting configuration registers. Both Sidekiq Z2 and Matchstiq
Z3u utilize a custom transport and the transport-specific FPGA bitstream is automatically loaded upon boot for these
radios. For details on configuring the FPGA, refer to FPGA Programming (page 102).

Note: Sidekiq X2, X4, Stretch, and NV100 do not support the USB transport layer.

5.4. Developing CustomApplications with libsidekiq 29

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Parameters
Depending on the Sidekiq product and configuration, availability of certain hardware peripherals may be limited.
Additionally, configuration of various RF parameters such as frequency, sample rate, and gain, vary. To determine the
parameters and ranges of a specific Sidekiq card, the skiq_read_parameters() API should be used. The parameters
available to query are defined in skiq_param_t.

5.4.4 Configuring an Interface using a Handle
Each of the underlying RF interfaces presents itself as a handle that can be used to reference the desired RF inter-
face for purposes of configuration and data transfer. The libsidekiq API provides read/write access functions for a
variety of radio configuration parameters. The full listing of these access functions can be found in the Sidekiq API
documentation (sidekiq_sdk_current/doc/api/Sidekiq_API_4.17.0.pdf) as well as in sidekiq_api.h.

Handles sharing the same letter (A1/A2) or (B1/B2) indicates a phase-coherent relationship and shared resources,
mainly a shared local oscillator (LO) and clocking. Consequently, adjusting the sample rate or center frequency on
handle A1 will also impact the sample rate on A2, and vice versa. Despite this dependence, each Rx interface has its
own independently configurable RF lineup including gain, overload detection, etc.

Please see the table below containing Sidekiq models, supported handles, and usage restrictions.

Sidekiq Variant Supported RxHandles Notes
mPCIe A1
mPCIe (-001 variant) A1, A2
m.2 A1, A2
X2 A1, A2, B1
X4 A1, A2, B1, B2, C1, D1

Neither C1/A2 nor D1/A2 support simultaneous
operation.

4 channel phase coherent Rx (A1,A2,B1,B2) is
supported.

Sidekiq Stretch A1
NV100 A1, A2, B1 A2 and B1 cannot be used simultaneously.
Matchstiq Z3u A1, A2

Note: If streaming is attempted for conflicting streams, the start streaming call will fail with -EBUSY. To determine
conflicting handles, the skiq_read_rx_stream_handle_conflict() API function can be used.

An example sequence for configuring a sub-set of the available parameters for multiple Rx interface handles is shown
below.

result = skiq_write_rx_sample_rate_and_bandwidth(card, hdl_a1, sample_rate, bandwidth);
if (result != 0)
{
printf("Error: failed to set sample rate to %u Hz on RxA1\n", sample_rate);
return(-1);

}

result = skiq_write_rx_sample_rate_and_bandwidth(card, hdl_a2, sample_rate, bandwidth);

(continues on next page)

5.4. Developing CustomApplications with libsidekiq 30

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

if (result != 0)
{
printf("Error: failed to set sample rate to %u Hz on RxA2\n", sample_rate);
return(-1);

}

result = skiq_write_rx_LO_freq(card, hdl_a1, lo_freq);
if (result != 0)
{
printf("Error: failed to set Rx LO freq to %" PRIu64 " Hz on RxA1\n", lo_freq);
return(-1);

}

result = skiq_write_rx_gain_mode(card, hdl_a1, skiq_rx_gain_manual);
if (result != 0)
{
printf("Error: failed to set Rx gain mode to manual on RxA1\n");
return(-1);

}

result = skiq_write_rx_gain_mode(card, hdl_a2, skiq_rx_gain_manual);
if (result != 0)
{
printf("Error: failed to set Rx gain mode to manual on RxA2\n");
return(-1);

}

result = skiq_read_rx_gain_index_range(card, hdl_a1, &gain_index_min, &gain_index_max);
if (result != 0)
{
printf("Error: failed to read Rx gain index on RxA1\n");
return(-1);

}
rx_a1_gain = gain_index_min;

result = skiq_read_rx_gain_index_range(card, hdl_a2, &gain_index_min, &gain_index_max);
if (result != 0)
{
printf("Error: failed to read Rx gain index on RxA2\n");
return(-1);

}
rx_a2_gain = gain_index_max;

result = skiq_write_rx_gain(card, hdl_a1, rx_a1_gain);
if (result != 0)
{
printf("Error: failed to set Rx gain to %u on RxA1\n", rx_a1_gain);
return(-1);

}

result = skiq_write_rx_gain(card, hdl_a2, rx_a2_gain);
if (result != 0)
{
printf("Error: failed to set Rx gain to %u on RxA2\n", rx_a2_gain);
return(-1);

}

5.4. Developing CustomApplications with libsidekiq 31

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

All access functions return an int32_t with a status code, where 0 = success and any other value indicates an error
that occurred.

5.4.5 Frequency Hopping
As of libsidekiq v4.10, the ability to rapidly hop amongst a user pre-defined frequency list is supported for
most products. Examples of how to use the frequency hopping APIs are provided in the tx_configure and
rx_samples_freq_hopping test applications.

The RFICs used on Sidekiq X4 and libsidekiq impose a restriction on how to perform frequency hopping. A hop index
can only be written to a “mailbox” slot on the RFIC. A hop operation executes a retune to the frequency in the “next”
slot, then delivers the index from the “mailbox” to the “next” slot. It acts much like a 2 element deep FIFO that
must have 1 or 2 indices enqueued and cannot go empty. Even though this approach is only required for Sidekiq X4,
libsidekiq presents a consistent interface across all radio products.

The general API flow (without error checking) to configure and utilize frequency hopping are shown in the figure
below. Details of the API functions related to frequency hopping are outlined in the sections that follow.

skiq_rx_hdl_t hdl = skiq_rx_hdl_A1;
uint8_t card = 0;
uint8_t num_hop_freqs = 5;
uint8_t initial_hop_idx = 0;
uint64_t freq_list[num_hop_freqs] = { 100000000, 200000000, 300000000, 400000000, 500000000 };

/* an RF timestamp of 0 indicates an "immediate" hop since 0 is always in the past */
uint64_t rf_timestamp = 0;

/* configure frequency tune mode for "immediate" */
skiq_write_rx_freq_tune_mode(card, hdl, skiq_freq_tune_mode_hop_immediate);

/* configure the hopping frequency list and the initial hop index */
skiq_write_rx_freq_hop_list(card, hdl, num_hop_freqs, freq_list, initial_hop_idx);

/* prepare the next hop to follow the initial hop index to be at freq_list[3] */
skiq_write_next_rx_freq_hop(card, hdl, 3);

/* immediately execute the hop to the initial frequency (i.e. freq_list[initial_hop_idx]) */
skiq_perform_rx_freq_hop(card, hdl, rf_timestamp);

/* prepare the next hop to follow the freq_list[3] to be at freq_list[1] */
skiq_write_next_rx_freq_hop(card, hdl, 1);

/* immediately execute the hop to the second frequency (i.e. freq_list[3]) */
skiq_perform_rx_freq_hop(card, hdl, rf_timestamp);

/* at this point, there is one hop left in the RFIC's hop FIFO: freq_list[1]. In order to hop to
that frequency, however, a frequency index *must* first be written to the "mailbox" slot using
skiq_write_next_rx_freq_hop() or the FIFO will go empty (which is not allowed) */

Configuring TuneMode
The tune mode can be configured to hop on timestamp (skiq_tune_mode_hop_on_timestamp), hop immediately
(skiq_tune_mode_hop_immediate), or to use the default of the “standard” tuning (skiq_tune_mode_standard).

The mode can be configured with skiq_write_rx_freq_tune_mode() / skiq_write_tx_freq_tune_mode(). Addition-
ally, the current mode can be queried with skiq_read_rx_freq_tune_mode() / skiq_read_tx_freq_tune_mode().

5.4. Developing CustomApplications with libsidekiq 32

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Note that while Sidekiq X2’s RFIC does not support fast frequency hopping, the API to perform the LO tuning is
supported when using skiq_tune_mode_hop_immediate (as of libsidekiq v4.12.0).

When retuning with the frequency hopping API in either the skiq_tune_mode_hop_on_timestamp or
skiq_tune_mode_hop_immediate tuning mode, the RFIC’s calibration algorithms are not performed to support faster
tuning. If rapid tuning is desired at the cost of reduced RF performance, the frequency hopping tune mode is rec-
ommended. However, if maximum reduction of DC offset or image is desired, then the standard tuning mode is
recommended.

Frequency List Definition
When using frequency hopping, a list of frequencies must be specified prior to executing a hop to a specific frequency.
The maximum number of frequencies that can be specified is limited to SKIQ_MAX_NUM_FREQ_HOPS.

The frequency list can be defined with skiq_write_rx_freq_hop_list() / skiq_write_tx_freq_hop_list(). A previ-
ously specified frequency list can be queried with skiq_read_rx_freq_hop_list() / skiq_read_tx_freq_hop_list().

Prepare Next Frequency Hop
The next frequency to hop to must be configured prior to executing the frequency hop using either the
skiq_write_next_rx_freq_hop() / skiq_write_next_tx_freq_hop() API calls. To determine the details of the previ-
ously configured “next hop”, the skiq_read_next_rx_freq_hop() / skiq_read_next_tx_freq_hop() API calls can be
used. When a hop is executed with skiq_perform_rx_freq_hop() / skiq_perform_tx_freq_hop(), this will be the
frequency that is configured.

Execute Frequency Hop
As long as there was a previously configured “next hop”, the “perform hop” APIs can be used to execute
the frequency hop. In the case of skiq_tune_mode_hop_immediate, the frequency hop is executed immediately.
In the case of skiq_tune_mode_hop_on_timestamp, the frequency hop is not initiated until the specified times-
tamp has been reached; if a timestamp in the past is specified, then the frequency hop occurs immediately.
The API to complete the frequency hop is skiq_perform_rx_freq_hop() / skiq_perform_tx_freq_hop(). The
skiq_read_curr_rx_freq_hop() / skiq_read_curr_tx_freq_hop() API functions can be used to query the details
of the currently configured frequency.

Note: Hopping on timestamp uses GPIO pins between the FPGA and RFIC to execute the frequency hop. If these
pins are already in use with a custom FPGA design, unexpected behavior may occur.

5.4.6 OperationModes
Sidekiq can support 3 different modes of operation: single channel receiver (Rx A/B/C/D 1 only), dual channel
receiver (both Rx A/B1 and Rx A/B2), or single channel transceiver (Rx A1 / Tx A1). With the Sidekiq-002, Sidekiq
Z2 products, and Sidekiq m.2 2280 only a single channel transceiver is available. For Matchstiq Z3u, either a single
channel transceiver is supported or a dual channel receiver mode can be used. The operation mode is specified by
configuring the channel mode:

/* configure mode for both Rx A/B1 and Rx A/B2 */
skiq_write_chan_mode(card, skiq_chan_mode_dual);

5.4. Developing CustomApplications with libsidekiq 33

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

If only Rx A1/B1/C1/D1 is needed for receiving or if transmitting, the mode should be set to skiq_chan_mode_single.
This mode should be configured prior to starting an interface or undefined behavior may occur.

The Sidekiq m.2, Sidekiq X2, Sidekiq X4, and Sidekiq NV100 products additionally support a dual channel transceiver
(Rx A/B 1/2 and Tx A/B 1/2). The skiq_write_chan_mode() API call may be used as well to configure the channel
mode.

Finally, both Sidekiq X4 and Sidekiq NV100 are each based on different RFICs found on the other Sidekiq prod-
ucts. These RFICs are designed primarily for TDD usage. This means that Rx and Tx cannot be streaming at the
same time for the A* or B* handles. Note that streaming TX for an A* handle can happen simultaneously while
receiving on a B* handle. Additionally, the LO frequency is shared across Rx and Tx frequencies. In the case
of Sidekiq X4, skiq_rx_hdl_A1 / skiq_rx_hdl_A2 share the LO frequency with skiq_tx_hdl_A1 / skiq_tx_hdl_A2
and skiq_rx_hdl_B1 / skiq_rx_hdl_B2 share the LO frequency with skiq_tx_hdl_B1 / skiq_tx_hdl_B2 for the
Sidekiq X4 product. In the case of Sidekiq NV100, skiq_rx_hdl_A1 / skiq_rx_hdl_A2 share an LO, and
skiq_tx_hdl_A1/skiq_tx_hdl_B1 share an LO with skiq_rx_hdl_B1. The ability to adjust the Tx LO selection will be
supported in a future libsidekiq version.

5.4.7 RF Port Configuration
Certain versions of the Sidekiq product support configuration of the RF port mode to perform either transmission or
reception of sample data (referred to as TRx operation). Alternatively, the Sidekiq card operates in fixed mode, where
the RF ports cannot be switched between receive and transmit. A detailed table outlining options and configurations
per Sidekiq is captured in Detailed RF Port Configuration (page 100).

Certain versions of the Sidekiq card also support configuration of the RF port to RF handle mapping. Note that only
specific RF ports are available in the fixed or TRx mode. To determine RF ports available for a specific handle, the
following API can be used:

/* read the RX ports available for Rx A1 */
skiq_read_rx_rf_ports_avail_for_hdl(card,

skiq_rx_hdl_A1,
&num_fixed_rf_ports,
fixed_rf_ports,
&num_trx_rf_ports,
trx_rf_ports);

/* read the TX ports available for Tx A1 */
skiq_read_tx_rf_ports_avail_for_hdl(card,

skiq_tx_hdl_A1,
&num_fixed_rf_ports,
fixed_rf_ports,
&num_trx_rf_ports,
trx_rf_ports);

The currently configured RF port can be queried and optionally configured, as shown below.

/* read the configured RF port for Rx A1 */
skiq_read_rx_rf_port_for_hdl(card,

skiq_rx_hdl_A1,
&rf_port);

/* read the configured RF port for Tx A1 */
skiq_read_tx_rf_port_for_hdl(card,

skiq_tx_hdl_A1,
&rf_port);

(continues on next page)

5.4. Developing CustomApplications with libsidekiq 34

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

/* write the configured RF port for Rx A1 */
skiq_write_rx_rf_port_for_hdl(card,

skiq_rx_hdl_A1,
skiq_rf_port_J2);

/* write the configured RF port for Tx A1 */
skiq_write_tx_rf_port_for_hdl(card,

skiq_tx_hdl_A1,
skiq_rf_port_J1);

The RF port modes available for a specific Sidekiq can be queried directly as shown below, or accessed via the
skiq_params_t.

/* determine the RF port configuration available */
skiq_read_rf_port_config_avail(card, &fixed_mode, &trx_mode);

Additionally, some variants of Sidekiq support updating the RF port configuration dynamically. The current RF port
configuration can be read by:

/* determine the current RF port configuration */
skiq_read_rf_port_config(card, &rf_port_config);

Finally, when operating with the RF configuration of skiq_rf_port_config_trx, the mode of RF port can switch
between receive and transmit with the following API.

/* switch the operation of the RF port to transmit */
skiq_write_rf_port_operation(card, true);

/* switch the operation of the RF port to receive */
skiq_write_rf_port_operation(card, false);

For more details on the modes available for a specific hardware variant of Sidekiq, please contact Epiq Solutions sup-
port [5] (page 8). For an example of switching between receive and transmit modes, refer to the tdd_rx_tx_samples.
c test application.

5.4.8 I/QOrderingMode
The order in which complex samples are received or transmitted by Sidekiq is a configurable option. Ordering can be
adjusted by the user at run-time before streaming is started by means of the skiq_write_iq_order_mode() function
and the skiq_iq_order_t type. If not specified, Sidekiq will operate with skiq_iq_order_qi, as depicted in the Rx
I/Q Packet Structure (page 38) and Tx Packet Structure (page 45) figures. In this mode, Q0 is data[0], I0 is data[1],
Q1 is data[2], I1 is data[3], and so on.

Alternatively in the case of skiq_iq_order_iq, the order will be swapped: I0 is data[0], Q0 is data[1], I1 is data[2],
Q1 is data[3], and so on. For an example of adjusting the ordering mode, please refer to the test application
rx_samples.c or tx_samples.c.

5.4.9 PackedMode (SidekiqmPCIe, m.2, and Stretch /m.2-2280 only)
By default, Sidekiq radios operate in ‘unpacked’ mode where each I or Q sample is stored in its own 16-bit
value. However, not all radios use all 16-bits for sample data - see below table for more information. To
query the supported I/Q sample size (resolution) using the libsidekiq API, use skiq_read_rx_iq_resolution() and
skiq_read_tx_iq_resolution().

5.4. Developing CustomApplications with libsidekiq 35

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.3: Unpacked sample sizes per radio
Radio RX sample size (in bits) TX sample size (in bits)
Sidekiq mPCIe 12 * 12 *

Sidekiq m.2 12 * 12 *

Sidekiq Stretch 12 * 12 *

Sidekiq Z2 12 * 12 *

Matchstiq Z3u 12 * 12 *

Sidekiq X2 16 14 (upper)
Sidekiq X4 16 14 (upper)
Sidekiq NV100 16 16

* – sample is sign extended to 16 bits

Additionally, Sidekiq mPCIe, Sidekiq m.2, and Sidekiq Stretch also support a mode of operation that compacts the I/Q
samples to use 12-bits instead of 16-bits per I and Q sample. This mode is referred to as packed mode. Packed mode is
useful when it is desired to operate at a sample rate higher than the rate at which the transport interface can reliably
transfer data. This allows for more samples to be transferred within a given time period at the cost of requiring
unpacking of the samples prior to consumption when receiving or packing of the samples while transmitting. Packed
mode can be enabled or disabled by calling the skiq_write_iq_pack_mode() function. The mode applies to both
transmitting and receiving samples. When packed mode is enabled, the sample data should be formatted as shown
in Sidekiq Packed Sample Structure (page 36). The format of the metadata remains the same regardless of whether
packed mode is enabled or not.

Fig. 5.1: Sidekiq Packed Sample Structure

5.4.10 Starting an Rx Interface
Once an Rx interface has been properly configured for operation, the interface can then be started to begin data
flowing between the CPU and FPGA. The process of starting an Rx interface allows a user to specify the Rx interface
handle to start. An example of starting an Rx interface is shown below.

/* begin streaming on the Rx interface */
result = skiq_start_rx_streaming(card, hdl);

Reading I/Q Samples from an Rx Interface
Once an Rx interface has started streaming, a block of contiguous I/Q samples can be read from the Rx interface
using the skiq_receive() function. This function accepts a pointer to a skiq_rx_block_t pointer that will then be
populated with the address of where the metadata and I/Q data block is stored in the DMA engine provided by
libsidekiq. No memory copy operation is performed here when using the PCIe transport, just an update of the passed
in pointer, to maximize efficiency of accessing the data. Note that this memory is controlled by the DMA interface and
is not reserved for the application. Thus, if the data is not copied or processed prior to the DMA interface requiring

5.4. Developing CustomApplications with libsidekiq 36

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

that memory for new sample data, there is the potential for the sample data to be overwritten. The sample rate of
each of the active interfaces will determine how quickly the DMA engine fills up the and overwrites previous sample
data. To check for an overflow condition, the RF pair timestamp should be monitored (as discussed in the below
paragraphs and shown in the code example).

Note: Each successful call to skiq_receive() will only return a single packet.

The default behavior of skiq_receive() function is non-blocking. If there is no new data available, the function will
return immediately with a status of skiq_rx_status_no_data. For details on how to configure and use the blocking
receive capabilities, refer to Developing Custom Applications with libsidekiq (page 26). In the default case of non-
blocking receive,the application is responsible for polling the receive interface for packets. There is some overhead
associated with calling skiq_receive() when no new data is available, so it is recommended to throttle the calls
based on when sample data is expected to be available or utilize the blocking receive capability. Additionally, when
multiple Rx handles are enabled, the packets of sample data from each of the handles may be interleaved, and the
p_hdl parameter of the skiq_receive() function is populated with the source handle from which the packet was
received. The contents of skiq_receive() arguments are valid only when skiq_rx_status_success is returned.

The skiq_rx_block_t structure has fields for the I/Q data and elements of the metadata in the header. Note: future
versions of libsidekiq may adjust this header size, so there is a #define called SKIQ_RX_HEADER_SIZE_IN_WORDS which
specifies the size of the header. The metadata contains a timestamp which is incremented at the same rate as the
sample rate of that Rx interface. This field is called rf_timestamp in the skiq_rx_block_t struct. Additionally, the
phase coherent RF pair (Rx A1/2 or Rx B1/2) uses the same timestamp reference, or in the case of Sidekiq X4, all 4
phase coherent receivers use the same timestamp reference. This allows the samples from Rx A1 to be phase aligned
with samples from Rx A2 (or in the case of Sidekiq X4, Rx A1/A2/B1/B2 are all phase aligned). The metadata
also contains the system timestamp associated with the packet (named sys_timestamp). The system timestamp
is maintained independent of the sample rate and is used across all of the Rx interfaces. The system metadata
(currently available only with PCI transport) comprises of the RF IC control output bits, the Rx overload status
(not available with all products), and the data source (handle). The data source correlates to the skiq_rx_hdl_t
definition. The Rx overload bit is set if the Rx overload detection was active for that packet (not available with all
products). The RF IC control output bits are defined by both the RF IC control output mode and enable; configured by
the skiq_write_rfic_control_output_config() API. For details on the modes available, please refer to the “Control
Output” section of [9] (page 8) (for Sidekiq mPCIe / m.2 / m.2-2280 / Z2 / Z3u), “Monitor Output” section of [10]
(page 8) (for Sidekiq X2), or “GPIO Monitor Mode” of [11] (page 8) (for Sidekiq X4). Note that the rx_samples.c
test application provides an example of configuring the mode such that the gain of RxA1 is present in the metadata.
The user metadata is a 32-bit field available for custom FPGA applications to use if desired. The ‘data’ field of the
skiq_rx_block_t struct consists of I/Q sample data. The fields of the example I/Q packet is shown below. In some
applications it may be desirable to change the ordering of the complex (I/Q) samples. For details on how to do so,
please refer to I/Q Ordering Mode (page 35)

5.4. Developing CustomApplications with libsidekiq 37

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.4: Rx I/Q Packet Structure
Field Width

(bits)
Description

rf_timestamp 64 RF timestamp associated with the received sample block
sys_timestamp 64 System timestamp associated with the received sample block
hdl 6 Receive handle indicating the receive handle associated with the received sam-

ple block
overload 1 RF Overload indicating whether or not the RF input was overloaded for the

received sample block
rfic_control 8 RFIC control word carries metadata from the RFIC, typically the receive gain

index
id 8 Channel ID used by channelizer (currently unused)
system_meta 6 System metadata (unused / reserved)
version 3 Packet version field
user_meta 32 User metadata typically populated by a custom FPGA build
int16_t data[] 16 array of unpacked I/Q samples (16 bits per I or Q sample). Q0 is data[0], I0 is

data[1], Q1 is data[2], I1 is data[3], and so on.

Note: If a sufficiently high sample rate is selected (typically in the range of ~50 Msamples/sec - equivalent to 200
MB/sec - for Sidekiq mPCIe, dependent on the capabilities of the host platform), gaps in the timestamps may occur
due to either:

1. the libsidekiq software ring buffer filling up, or

2. the throughput rate of the FPGA → CPU interface being exceeded.

For applications that require continuous data flow, it is imperative to confirm that the timestamp is mono-
tonically increasing at the expected rate to ensure no data is dropped. For recommendations on how
to evaluate the Rx throughput performance for a particular host system, refer to Receive Performance
(page 92).

An example loop that does nothing but read blocks of I/Q data and verifies the timestamps (to ensure that no gaps
exist in the data stream) is shown below.

/* loop through and acquire the requested # of i/q sample blocks, verifying
that the timestamp (ts) increments as expected */

while(num_blocks < tot_num_blocks)
{
status = skiq_receive(card, &hdl, &p_rx_block, &len);
if(status == skiq_rx_status_success)
{

if(p_rx_block != NULL)
{
curr_ts = p_rx_block->rf_timestamp;

if(first_block == true)
{

first_block = false;
next_ts = curr_ts;
next_ts += ((len/4) - SKIQ_RX_HEADER_SIZE_IN_WORDS);

}
else if(curr_ts != next_ts)
{

(continues on next page)

5.4. Developing CustomApplications with libsidekiq 38

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

printf("Error: timestamp error expected 0x%016" PRIx64 " but got 0x%016" PRIx64
".\n", next_ts, curr_ts);

return (-1);
}
else
{

next_ts += ((len/4) - SKIQ_RX_HEADER_SIZE_IN_WORDS);
}

}

num_blocks++;
}

}

Lastly, most parameters associated with a given Rx interface can be updated after the interface has been started.
It is not necessary to stop the interface to re-configure an interface. The only exceptions here are that changes to
the channel mode, packed mode, I/Q order mode, and data source mode must be configured prior to starting the
interface. Also, a change to sample rate will result in the data flow being automatically stopped and restarted once
the sample rate has been applied.

CounterModewith Rx Interface
An Rx interface can be configured to either provide I/Q sample data or counter data. The normal mode of operation
is using the I/Q sample mode. However, counter mode can be useful in various test scenarios. The type of data
provided can be configured with the skiq_write_rx_data_src() function. The data source can be updated at any
time but is only applied when streaming is started. When in counter mode, each sample is a 12-bit value for Sidekiq
mPCIe, m.2, m.2-2280, Z2 and Matchstiq Z3u and 16-bit for Sidekiq X2, X4, and NV100. When running in counter
mode on the Sidekiq, the I sample is odd while the Q sample is an even number. For details on how to validate the
counter data, refer to the verify_data() function in the rx_samples.c test application.

Making skiq_receive a blocking call
As of libsidekiq v3.3.0, a call to skiq_receive() can be configured to block until an I/Q sample block is available
instead of returning immediately. Using a blocking infrastructure can save CPU cycles and provide other processes
with time to execute. The addition of a blocking receive call also provides flexibility in how libsidekiq may be
leveraged for different use cases.

Note: Not all transports support blocking receive.

The arguments to skiq_receive() stay the same and libsidekiq continues to default to non-blocking
for skiq_receive(). The skiq_set_rx_transfer_timeout() API function allows a developer to specify
how skiq_receive() behaves when samples are not available. For example, if the developer specifies
RX_TRANSFER_NO_WAIT to skiq_set_rx_transfer_timeout(), a call to skiq_receive() returns immediately if samples
are not available (this is the default behavior). A developer may specify a timeout between 20uS and 1000000uS
to skiq_set_rx_transfer_timeout(). In this configuration, a call to skiq_receive() will return after the spec-
ified timeout has elapsed if samples are not available. If the developer specifies RX_TRANSFER_WAIT_FOREVER as
the timeout, a call to skiq_receive() will block indefinitely until samples are available. In both the timeout and
RX_TRANSFER_WAIT_FOREVER configurations, skiq_receive() returns once samples are available at the next opportu-
nity the kernel provides to the associated process.

5.4. Developing CustomApplications with libsidekiq 39

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Note: For improved CPU usage and efficiency in receiving, a non-zero timeout is recommended. Additionally, a
timeout that is greater than the inter-sample-block timing at the configured Rx sample rate is also recommended. In
most cases, a timeout of 25000uS is sufficient to reap the benefits of a blocking receive.

Caution: when using a non-zero timeout, calling skiq_stop_rx_streaming() or skiq_exit() from another
thread can cause skiq_receive() to return without a packet. Be sure to handle that case.

If desired to configure a timeout for the receive call, the API skiq_get_rx_transfer_timeout() pro-
vides the timeout value or a pre-processor define (RX_TRANSFER_NO_WAIT, RX_TRANSFER_WAIT_FOREVER, or
RX_TRANSFER_WAIT_NOT_SUPPORTED). The value RX_TRANSFER_WAIT_NOT_SUPPORTED is provided in cases where the
transport layer (currently custom or USB) does not support a blocking receive infrastructure.

For an example application that optionally makes use of the blocking receive capabilities, refer to the rx_samples.c
test application.

Using receive calibration offsets
With the introduction of libsidekiq v4.4.0, Sidekiq units leaving the factory have a per-unit receiver calibration data
stored in non-volatile memory. There are several API functions (introduced in libsidekiq v4.0.0) that provide a receive
calibration offset based on the RF configuration that may be applied by the user to calculate the calibrated RF energy
present in a block of I/Q samples. If a unit does not have stored calibration data, the API functions will fall back to
a default data set that represents a given product line (miniPCIe vs m.2 vs Z2, etc), receive handle (skiq_rx_hdl_t),
and RF port (skiq_rf_port_t). The four API functions that provide a calibration offset are as follows.

• skiq_read_rx_cal_offset()

• skiq_read_rx_cal_offset_by_gain_index()

• skiq_read_rx_cal_offset_by_LO_freq()

• skiq_read_rx_cal_offset_by_LO_freq_and_gain_index()

These functions provide varying degrees of control when querying for a receive calibration offset. If a parameter is
not specifiable, it is taken from the present RF configuration.

In order to use the receive calibration offset 𝐺𝑟𝑎𝑑𝑖𝑜, a user should first calculate the baseband power in dB (𝑃𝑏𝑏),
then subtract the calibration offset (returned in units of dB) to calculate the RF power (𝑃𝑟𝑓) of the signal in dBm.
The equations below further describe how to apply 𝐺𝑟𝑎𝑑𝑖𝑜:

𝑃𝑏𝑏 = 10 𝑙𝑜𝑔10

(︃
1

𝑁

𝑁∑︁
𝑘=0

𝑖2𝑘 + 𝑞2𝑘

)︃
𝑃𝑟𝑓 = 𝑃𝑏𝑏 −𝐺𝑟𝑎𝑑𝑖𝑜

Using I/Q phase and amplitude calibration
With the introduction of libsidekiq v4.7.0, the Sidekiq X4 FPGA design provides in-line complex multipliers for each
receiver handle (Rx A1, Rx A2, Rx B1, and Rx B2; not available with Rx C1/D1) to allow a user to reduce phase and
amplitude differences among the receivers. At this release, the Sidekiq X4 units leaving the factory have per-unit I/Q
phase and amplitude calibration data stored in non-volatile memory. There exist several API functions that read the
calibration settings for a given LO frequency as well as allow a user to either override or supplement the adjustment

5.4. Developing CustomApplications with libsidekiq 40

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

values. At this time, if a unit does not have stored calibration data, there is no default data set. The API functions that
provide access to this feature are as follows. Refer to the API documentation for additional details on this interface.

• skiq_read_iq_complex_multiplier()

• skiq_read_iq_cal_complex_multiplier()

• skiq_read_iq_cal_complex_multiplier_by_LO_freq()

• skiq_write_iq_complex_multiplier_absolute()

• skiq_write_iq_complex_multiplier_user()

• skiq_read_iq_complex_cal_data_present()

Note that skiq_read_iq_complex_multiplier() returns the complex multiplication factor currently in use, while
skiq_read_iq_cal_complex_multiplier() (note the extra cal in the function name), returns the complex multipli-
cation factor as determined by the unit’s factory calibration. These two factors may differ if a user has overwritten
(skiq_write_iq_complex_multiplier_absolute()) or supplemented (skiq_write_iq_complex_multiplier_user())
the factor for a given receiver handle.

The factor is automatically updated (or reset) whenever the receive LO frequency is configured. Any user modifica-
tions to the multiplication factor must be reapplied after a frequency configuration.

In libsidekiq v4.7.0, these multipliers are always in effect on Sidekiq X4. If a user wishes to disable them, setting an
absolute factor of 1+0j is recommended.

5.4.11 Configuring a Tx Interface
There are various aspects of the transmit interface which must be configured prior to starting streaming. These
control the behavior of skiq_transmit() and are described in detail in the following sections. For recommendations
on how to evaluate the Tx throughput performance for a particular host system and the various Tx configuration
parameters, refer to Transmit Performance (page 92).

Block Size Configuration
The block size is the number of samples included in each transmit packet. A transmit packet consists of the transmit
header data as well as the block, which contains the transmit samples (refer to Tx Packet Structure (page 45) for the
structure of a transmit packet). While in packed mode, the block size refers to the number of words contained in the
packet not including the header data.

The block size is adjustable and in general, a larger block size results in higher throughput without underruns or late
timestamps. The trade-off of using a larger block size is an increase in latency in the transfer of the transmit packet.

A block size + Tx header size (as defined by SKIQ_TX_HEADER_SIZE_IN_WORDS) must be a multiple of 256 words.
The block size can be configured with skiq_write_tx_block_size(). If an invalid block size is configured,
skiq_start_tx_streaming() will result in a failure. A few examples of valid block sizes when running in single
channel mode are: 1020 (packet size=1020+4=1024), 2044 (packet size=2044+4=2048), and 16380 (packet
size=16380+4=16384).

When running in dual channel mode, the block size refers to the number of words contained for each channel. Also,
when in dual channel mode, the maximum block size is limited by the FPGA Tx FIFO size. Note: dual channel
transmit is supported only with Sidekiq m.2, X2, X4, and NV100. Dual channel transmit can be with A1/A2 or A1/B1
handle pairs. The secondary handle is used in calls to start streaming and skiq_transmit(). When running in dual
channel, a few example valid packet sizes are: 1022 (packet size=1022 TxA1 samples + 1022 TxA2 samples + 4
header=2048), 2046 (packet size=2046 TxA1 samples + 2046 TxA2 samples + 4 header=4096), and 8190 (8190
TxA1 samples + 8190 TxA2 samples + 4 header=16384)

5.4. Developing CustomApplications with libsidekiq 41

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

When running in packed mode (Sidekiq mPCIe, m.2, and m.2-2280 only), care must be used to ensure that the block
size contains an integer number of samples and that the block size + header size remains a multiple of 256 words.
In packed mode, the block size refers to the number of words contained, not the number of samples. For example, a
block size of 252 results in 336 packed samples (252 * SKIQ_PACKED_SAMPLE_RATIO = 336), which is a valid packed
mode configuration. However, a block size of 508 results in 677.3 samples (508 * SKIQ_PACKED_SAMPLE_RATIO =
677.3), which is invalid.

Data FlowMode
The Tx interface can operate in one of several “data flow modes”, as configured by the user application. The default
data flow mode is “immediate”. In this mode, timestamps are ignored and the data is buffered up and transmitted
out as soon as possible. This is useful for applications that do not have a requirement for precise timing.

For applications that require fine grained control of the timing of the transmitted samples, the “with_timestamps”
data flow mode should be utilized. Each block of I/Q samples sent down to the Tx interface will need to have a 64-bit
timestamp located at SKIQ_TX_TIMESTAMP_OFFSET_IN_WORDS into the beginning of the block of data by the application
(see tx_samples.c in the test_apps directory for an example). This timestamp corresponds to the time when the
very first sample of the block will be transferred from the FPGA’s I/Q sample FIFO to the D/A converters. Each
subsequent complex sample in the block will then be transferred to the D/A converters one at a time as the timestamp
increments. This continues until the entire data block has been transmitted out. If continuous transmission of I/Q
samples is required, it is up to the user application to ensure that this pipeline of data between the user application
and the FPGA transmit FIFO is kept filled, thus preventing an underflow. In this mode, the FPGA will not transmit
any samples that specify a timestamp that is in the past; the samples will be discarded, the Tx FIFO will be flushed,
and the late timestamp counter is incremented (which can be read with the skiq_read_tx_num_late_timestamps()
function call).

As of libsidekiq v4.6.0, certain bitstreams support an additional mode: “with_timestamps_allow_late_data”. Select-
ing this mode will result in a return value of -ENOTSUP if not supported. In this mode, the FPGA will transmit samples
as described in the above “with_timestamps” section, but will also transmit samples that have a timestamp that’s
already past. Please note that in this mode, the late timestamp counter will not be updated, even if samples with late
timestamps are transmitted.

Tx Timestamp Clock Source selection
The timestamp source can be configured to either the system or RF (default) clock, when used in conjunction with a
timestamp data flow mode. Using a system timestamp may be preferred if an application frequently changes sample
rates (which causes the RF timestamp to pause). One caveat for using system timestamps is that it requires a data
flow mode of “allow late timestamps mode” due to the implementation.

Configuring the Tx timestamp clock source is supported on systems using FPGA bitstream v3.15.1 and above.

TransferMode
The transfer mode of the transmit interface can be configured to operate either synchronously or asynchronously.
The transfer mode can be configured with the skiq_write_tx_transfer_mode() function.

When running in skiq_tx_transfer_mode_sync mode, skiq_transmit() blocks if the FPGA transmit FIFO is
full until there is space for the next packet of data. The FPGA FIFO is relatively small (as defined by
skiq_fpga_tx_fifo_size_t), so it may be necessary for users to implement their own external buffering of sam-
ple data prior to calling the skiq_transmit() call. This mode can be simpler to interface with in that once the
skiq_transmit() function returns, the data has been transferred to the FPGA and can immediately be freed or
reused by the application. However, it only allows for a single packet at a time to be in flight to the FPGA. This
results in a potential decrease of throughput efficiency. The tx_samples.c application provides an example of how
to use the synchronous transfer mode.

5.4. Developing CustomApplications with libsidekiq 42

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

An alternative to the synchronous transfer mode is to run in skiq_tx_transfer_mode_async, which results in an in-
creased throughput. When running in skiq_tx_transfer_mode_async mode, skiq_transmit() returns immediately
with a status of either 0 or SKIQ_TX_ASYNC_SEND_QUEUE_FULL. A maximum of SKIQ_MAX_NUM_TX_QUEUED_PACKETS can
be queued at given point in time. If a status of 0 is returned, this indicates that the packet was successfully queued
for transmission but not necessarily transferred to the FPGA yet. A status of SKIQ_TX_ASYNC_SEND_QUEUE_FULL in-
dicates that the software buffer is full and the packet was not queued successfully. The skiq_transmit() call
must be repeated with this data buffer to transmit it. In order for the application to be notified when the asyn-
chronous transmit operation has been completed by the Sidekiq library, a function pointer must be registered with
the skiq_register_tx_complete_callback() prior to starting streaming on the Tx interface. Once the buffer has
been successfully transferred to the FPGA, the callback function is called and the status of the transmission, a pointer
to the data of the completed transmission, and optional user defined data associated specified when initiating the
transmission is provided. At this point, it is safe to either reuse or free the buffer. Prior to the callback, the buffered
should be considered in use by the Sidekiq library. The tx_samples_async.c application provides an example of
how to use the asynchronous transfer mode. The tx_benchmark application can be used to help assess the perfor-
mance tradeoffs with the different transfer modes and block sizes on the target host platform, as described in Receive
Performance (page 92).

5.4.12 Starting the Tx Interface
Once a Tx interface has been properly configured for operation, the interface can then be started to begin data
flowing between the CPU and FPGA.

Note: If the Sidekiq card is configured for dual channel mode, both TxA1 and TxA2 interfaces are enabled when
skiq_start_tx_streaming() is called with skiq_tx_hdl_A2 as the hdl argument. As of libsidekiq v4.13.0 and FPGA
bitstream v3.13.0, the Sidekiq X4 can also transmit using TxA1 and TxB1 to provide the user two independently tun-
able interfaces. At its introduction in libsidekiq v4.17.0, Sidekiq NV100 also supports transmit using TxA1 and TxB1.
In that case, the skiq_tx_hdl_B1 handle needs to be specified as the hdl argument to skiq_start_tx_streaming().

Caution: In a dual channel mode transmit configuration, the user must only specify the second handle to
skiq_start_tx_streaming() and skiq_stop_tx_streaming() variants. Both Tx interfaces are enabled within
each function call whenever the second handle is specified.

An update to the data flow mode / transfer mode / block size is allowed at any time, but is only applied when starting
the Tx interface. An example of configuring and starting the interface is shown below.

/* configure the data flow mode to use timestamps */
skiq_write_tx_data_flow_mode(card, skiq_tx_hdl_A1,

skiq_tx_with_timestamps_data_flow_mode);

/* configure the transfer mode to synchronous */
skiq_write_tx_transfer_mode(card, skiq_tx_hdl_A1,

skiq_tx_transfer_mode_sync);

/* configure the size of the block to send */
skiq_write_tx_block_size(card, skiq_tx_hdl_A1, num_samples);

/* begin streaming on the Tx A1 interface */
skiq_start_tx_streaming(card, skiq_tx_hdl_A1);

5.4. Developing CustomApplications with libsidekiq 43

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Writing I/Q Samples to a Tx Interface
Once the Tx interface has been started, it is up to the user application to provide the I/Q data to libsidekiq for
transmission. The I/Q data is provided to libsidekiq by calling skiq_transmit(). The skiq_transmit() can block
if running in the synchronous transfer mode or return immediately if running the asynchronous transfer mode. For
details on the transfer mode, refer to Transfer Mode (page 42).

The user application is responsible for populating the sample data prior to calling skiq_transmit(). The format
of each user-provided transmit packet is shown in Tx Packet Structure (page 45). The skiq_tx_block_t struct type
definition has fields that allow for easy access to the header and I/Q data. The miscHigh and miscLow fields are
reserved for future use. The timestamp field is reserved for the transmit timestamp. In the “with_timestamps”
data flow mode, the timestamp field is used to determine when the FPGA will actually send the data to the D/As.
If the FPGA detects that the timestamp specified by software has already passed, the entire FPGA FIFO will be
flushed and an error count is incremented. The number of “late timestamps” detected by the FPGA can be queried
with the skiq_read_tx_num_late_timestamps() API. On certain bitstreams, the “with_timestamps_allow_late” data
flow is available that acts much like “with_timestamps” mode, though the FPGA will transmit any samples
with a timestamp that has already passed and not increment the “late timestamp” count. The API function
skiq_read_last_tx_timestamp() provides the caller with the last timestamp the FPGA is acting upon and is use-
ful for debugging applications.

In the “immediate” data flow mode, this timestamp value is ignored and can be set to zero by user applications. It is
the user’s responsibility to ensure that the FPGA has enough data to transmit. If the FPGA encounters a case where
its FIFO is empty and there is no data to transmit while streaming, it will increment an underrun error count. This
count can be queried with the skiq_read_tx_num_underruns() API.

The sample data (the data field of the skiq_tx_block_t struct) are 32-bit values, where the most significant 16-bits
contains the “I” data, and the least significant 16-bits contain “Q” data. Each “I” and “Q” data word is represented
in little endian form as a twos-complement number, sign-extended from the actual width of the D/A converters used
in Sidekiq to 16-bits. For the Sidekiq mPCI, m.2, Z2, m.2-2280 and Matchstiq Z3u there are 12 data bits in each
sample; for both Sidekiq X2 and Sidekiq X4, there are 14 data bits in each sample; and for Sidekiq NV100, there are
16 data bits in each sample.

The number of samples contained within a single block of data is variable and is configured with the
skiq_write_tx_block_size() API, as described in Block Size Configuration (page 41). The format of the structure of
the transmit packet is shown in Tx Packet Structure (page 45).

5.4. Developing CustomApplications with libsidekiq 44

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 5.2: Tx Packet Structure

See the tx_samples.c and tx_samples_async.c example applications in the test_apps/ directory for details of how
a real-world application uses this interface in both synchronous and asynchronous transfer modes.

5.4.13 Simultaneous use of Tx and Rx Interfaces
Most Sidekiq products support running the Tx and Rx interfaces simultaneously, with the exception of Sidekiq X4;
these products support both FDD and TDD applications. Specifically, for an FDD application, the Rx interface can be
tuned to one RF frequency, and the Tx interface is tuned to a different RF frequency. Note that Sidekiq X4 does allow
for a A* handle to be configured for TX simultaneously to a B* handle configured for RX.

From a software application perspective, a multi-threading library (such as pthreads) can be used to manage the
Rx/Tx interfaces in separate threads. See the fdd_rx_tx_samples.c test application for an example of performing
simultaneous FDD operation.

In the case of TDD operation, the Tx and Rx interfaces can be configured separately, and then proceed through a
sequence of starting and stopping the Tx and Rx interfaces as each transmit or receive operation is performed. An
example of typical TDD operation can be found in the tdd_rx_tx_samples.c test application. Note: the transmit
and receive FIFOs are flushed upon restarting the interface, so if the interface is stopped prior to the sample data
completing reception or transmission, the data will be flushed.

5.4. Developing CustomApplications with libsidekiq 45

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Both the Rx and Tx interfaces share a common sample rate clock and timestamp, with the exception of certain
configurations of the Sidekiq X2 resulting in a configuration where the Tx interface sample rate is twice the Rx
sample rate. As a result, it is only necessary to configure the sample rate and reset the timestamp (if desired) for
either the Rx or Tx interface.

5.4.14 Stopping and Releasing an Interface
When an application no longer needs to transfer data with a previously started interface, the interface can be
stopped which will prevent future data transfers until the next “start” function is executed. Stopping an Rx in-
terface takes place when the skiq_stop_rx_streaming() function is called. Stopping a Tx interface takes place when
the skiq_stop_tx_streaming() function is called. Both the system timestamp and RF pair timestamp continues to
increment regardless of whether the system is currently streaming.

Starting and Stopping on 1PPS
Sidekiq can be configured to start and stop streaming on a future 1PPS edge. To start Rx streaming on a 1PPS
edge, the function skiq_start_rx_streaming_on_1pps() is called by the user application. To stop Rx stream-
ing on a 1PPS edge, the function skiq_stop_rx_streaming_on_1pps() is called by the user application. A simi-
lar function exists for controlling the streaming operation on Tx (i.e., skiq_start_tx_streaming_on_1pps() and
skiq_stop_tx_streaming_on_1pps()). All of the skiq_*_streaming_on_1pps() functions block until the 1PPS oc-
curs.

To ensure that data begins to flow when the 1PPS occurs without any dropout, it is highly recom-
mended that one thread is used to receive/transmit the data, and a separate thread is used to call the
skiq_start_*_streaming_on_1pps function. Additionally, the thread performing the receiving/transmitting of data
should be started prior to the call to start streaming. To ensure that the first packet queued to transmit is the first
desired samples, it is recommended to register a callback for when the FPGA is ready to accept samples prior to the
1PPS occurring. The callback can be registered via the skiq_register_tx_enabled() API.

In the case of stopping the Rx streaming on a 1PPS, the skiq_receive() function needs to continue to be called after
skiq_stop_rx_streaming_on_1pps() returns. This stop streaming function stops the data from being generated by
the FPGA. However, there will be data remaining in the internal FIFOs, so skiq_receive() should be called until no
data remains. Once there is no data returned from the skiq_receive() call, the skiq_stop_rx_streaming() function
should be called to finalize the disabling of the data flow.

1PPS Source

As of libsidekiq v4.7.0, certain Sidekiq products and revisions allow for configuration of the 1PPS source. Specifically,
the source of the 1PPS can be configured to be detected from an alternate pin. This configuration can be updated
while running with the skiq_write_1pps_source() API. Additionally, the current configuration can be queried with
the skiq_read_1pps_source() API.

Workingwithmultiple receive handles
As of libsidekiq v4.6.0, the following API functions are available to synchronize or coordinate the starting and stop-
ping of receive streaming. Each of these functions accepts an array of receive handles to start / stop together. It is
important to understand that the “multi_immediate” variant does NOT currently synchronize the receive handles,
but does offer a convenient way to start and/or stop multiple handles in a single call. As of libsidekiq v4.9.0, the
“synchronized trigger” source was introduced that allows for multiple receive handles on a given card to start and/or
stop with their RF timestamps synchronized.

Refer to the Sidekiq API documentation for more details on these functions.

5.4. Developing CustomApplications with libsidekiq 46

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

• skiq_start_rx_streaming_multi_immediate()

• skiq_start_rx_streaming_multi_on_trigger()

• skiq_stop_rx_streaming_multi_immediate()

• skiq_stop_rx_streaming_multi_on_trigger()

For detailed examples on starting/stopping on a 1PPS (receive and/or transmit) or a synchronized trigger (receive
only), refer to the test applications rx_samples_on_trigger.c and tx_samples_on_1pps.c.

5.4.15 Pin Control enable of RFIC signal paths (Sidekiq X4 only)
Since libsidekiq v4.14.0, the Tx/Rx signal paths on X4 can be controlled either through the libsidekiq API or by pins
asserted by the FPGA user_app. For minimal latency when switching between receive and transmit, pin control is
recommended.

Please consult the Sidekiq API documentation for more details on these functions.

• skiq_read_rx_rfic_pin_ctrl_mode()

• skiq_read_tx_rfic_pin_ctrl_mode()

• skiq_write_rx_rfic_pin_ctrl_mode()

• skiq_write_tx_rfic_pin_ctrl_mode()

5.4.16 Clock and TimeManagement Resources
Sidekiq uses a common reference clock to drive all of the RF/baseband hardware. This reference clock can come
from other an on-board temperature compensated voltage controlled oscillator (TCVCXO) or an external reference
clock (refer to Hardware User’s Manual for specific Sidekiq type). By default, Sidekiq uses the on-board TCVCXO
for its reference clock. This on-board TCVCXO has a stability of ±1 PPM over the temperature range from -30 deg
C to +85 deg C. For applications that need to dial in the accuracy of this timing reference even further, libsidekiq
provides an API call to warp the timing reference by generating an analog control voltage using an on-board D/A
converter (DAC) dedicated to this purpose. The skiq_write_tcvcxo_warp_voltage() function is used to warp the
control voltage of the oscillator. The reference clock can be adjusted by -1 to +6 ppm by adjusting the DAC voltage.
Valid warp voltage ranges are 0.75-2.25V, which corresponds to DAC values between 0 and 1023 for Sidekiq mPCIe
/ Sidekiq m.2 / Sidekiq Z2. On Sidekiq X2 rev C (unsupported in rev B), Sidekiq X4, Sidekiq Stretch, and Matchstiq
Z3u the warp voltage ranges are 0.4-2.4V, or values of 7944-47662. For details on providing an external reference
clock, refer to [6] (page 8).

In revision C of the mPCIe hardware and all revisions of the m.2, X2, and X4 hardware, the reference clock source
is configurable via software. The configuration of the reference clock is a persistent setting. The current source
can be queried via the skiq_read_ref_clock_select() API. As of libsidekiq v4.7.0, an additional reference clock
source of a host, skiq_ref_clock_host, can also be configured for specific Sidekiq products. The host reference clock
configuration utilizes an alternate clock frequency and input. For details on how to update this configuration, contact
Epiq Solutions [5] (page 8).

The reference clock source for a card can be temporarily changed on-the-fly, allowing applications to choose the clock
source as needed. The source can be changed via the skiq_write_ref_clock_select() function. This function will
update the current source, however this change will not be stored in memory nor maintained between applications.
This is not supported for all Sidekiq products. Products that do not support changing the reference clock source are
Sidekiq M.2 and Sidekiq mPCIe cards.

The reference clock frequency for a card can also be temporarily changed on-the-fly, allowing applica-
tions to switch between external reference frequencies as needed. The frequency can be changed via the
skiq_write_ext_ref_clock_freq() function and must be a supported external reference clock frequency per the

5.4. Developing CustomApplications with libsidekiq 47

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

card specification. This function will update the expected clock frequency, however this configuration is runtime only
and is not stored on the card nor permanent. Please note, this function will also automatically update the reference
clock selection to an external reference clock source. The reference clock selection is also not stored on the card nor
permanent. Changing the reference clock frequency using skiq_write_ext_ref_clock_freq() will stop any ongoing
receiving or transmitting. Runtime reference clock frequency switching is only supported on Sidekiq Stretch and
Sidekiq NV100 as of libsidekiq v4.17.0.

GPSDO
As of libsidekiq v4.15.0, the GPS Disciplined Oscillator (GPSDO) is available on Sidekiq Stretch when using FPGA
bitstream v3.14.1 or later. GPSDO is available for Matchstiq Z3u as of libsidekiq v4.16.0. GPSDO is available for
Sidekiq NV100 as of libsidekiq v4.17.0. Its functionality can be enabled with skiq_gpsdo_enable() (see Sidekiq
API (page 68) for API functions related to the GPSDO). When a GPS fix has been obtained by the Sidekiq’s on-
board GPS, the FPGA uses the GPS unit’s 1PPS signal to increase the accuracy of the Sidekiq’s on-board oscillator
by automatically adjusting the DAC warp voltage. If no GPS fix can be obtained or is lost, the DAC warp voltage
is kept at its current value; if no GPS fix is available on startup, the warp voltage is kept at its factory calibrated
default value. As the FPGA is now in control of the warp voltage, this prevents its manual adjustment through the
skiq_write_tcvcxo_warp_voltage() API function. Additionally, there are some sensor peripherals that share a bus
with the DAC warp voltage. As such, access to those sensors through API functions may, in some cases, indicate that
data is not available (-EAGAIN). For example, in the case of Sidekiq Stretch, the temperature sensor measurement
may not be available for up to one second after a call to skiq_gpsdo_enable() and a call to skiq_read_temp()
will return -EAGAIN if called in that time period. The skiq_gpsdo_is_locked() function (available as of libsidekiq
v4.17.0) queries the GPSDO control algorithm on the FPGA to check for a lock between the 1PPS signal and the
disciplined oscillator.

Starting with FPGA bitstream v3.15.1, the GPSDO algorithm can use one of a few different 1PPS sources for disci-
plining for on-board reference clock. The GPSDO 1PPS source configuration matches the card’s 1PPS source config-
uration and can be accessed or modified by calling skiq_read_1pps_source() or skiq_write_1pps_source() respec-
tively. Please note that when skiq_1pps_source_host is selected, the GPSDO algorithm only uses the 1PPS when the
GPS module additionally indicates a timing fix. If skiq_1pps_source_external is selected as the 1PPS source, then
GPSDO algorithm uses the 1PPS unconditionally.

Note: The GPSDO algorithm is unique since its execution may persist after a libsidekiq application exits. Support for
persistent execution was added to the Matchstiq Z3u and Sidekiq Stretch and Sidekiq NV100 as of libsidekiq v4.17.5.
The algorithm resides in the FPGA and does not require software intervention to continue working. The side effect
to this behavior is that previous libsidekiq releases (prior to v4.15.0) will not be able to read or write the DAC warp
voltage nor, in the case of Sidekiq Stretch, read the temperature sensor measurements at all. However, applications
linked against libsidekiq v4.15.0 or later will have alternate access to the DAC warp voltage and temperature sensors
as described above.

5.4.17 TimestampDetails
There is both an RF timestamp and System timestamp maintained by the Sidekiq card. The RF timestamp for both
receive and transmit are identical and increment at the rate of the sample rate. For each tick of the sample rate
clock, the RF timestamp increments by one. For Sidekiq mPCIe, m.2, m.2-2280, Z2, NV100, and Matchstiq Z3u,
the System timestamp increments independent of the sample rate. For Sidekiq X2 and Sidekiq X4, the System
timestamp increments at a rate relative to the sample rate and continues to increment regardless of any radio con-
figuration changes (with the exception of sample rate). The System timestamp frequency can be queried with the
skiq_read_parameters() function, and the current frequency value is located in sys_timestamp_freq variable of the
skiq_fpga_param_t data structure.

5.4. Developing CustomApplications with libsidekiq 48

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

The timestamps can be reset to zero asynchronously via the skiq_reset_timestamp() function. This will reset
both the RF and System timestamps. Additionally, if it is desired to set the timestamps to a specific value, the
skiq_update_timestamps() function can be used. Finally, if it is desired to reset or update the timestamps on a 1PPS
edge, then the skiq_write_timestamp_reset_on_1pps() or skiq_write_timestamp_update_on_1pps() functions can
be used. This is useful if it is necessary for the application to have the timestamps synchronized to a 1PPS source.

5.4.18 Automatic Calibration
Automatic calibration may be enabled and performed by Sidekiq by default. Automatic calibration algorithms include
DC offset reduction as well as quadrature error correction for both receive and transmit. Depending on the processing
being performed by the user radio application, automatic calibration may not be desired.

As of libsidekiq v4.6.0, the ability to disable automatic transmit quadrature calibration algorithm is supported.
Additionally, the ability to manually run the Tx quadrature calibration algorithm is supported. The Tx quadra-
ture algorithm may take time to converge and may not be desired to leave in automatic mode. Additionally,
execution of the Tx quadrature algorithm results in the appearance of erroneous transmissions in the spectrum
while running. To configure the Tx quadrature calibration algorithm mode to run either manually or automati-
cally, the skiq_write_tx_quadcal_mode() API can be used. The currently configured mode can be queried with the
skiq_read_tx_quadcal_mode(). To manually initiate the calibration algorithm to run, the skiq_run_tx_quadcal()
API can be used. Refer to the tx_samples.c application for the APIs associated with this.

As of libsidekiq v4.13.0, the ability to disable automatic receive calibration algorithms is supported
with skiq_write_rx_cal_mode(). Additionally, the specific calibration types ran can be configured with
skiq_write_rx_cal_type_mask(). The available calibrations that can be enabled can be queried with
skiq_read_rx_cal_types_avail(). Finally, if it is desired to manually run the RX calibration, the skiq_run_rx_cal()
API can be used. Refer to the rx_samples.c application for an example use of these APIs.

5.4.19 Receive StreamMode
A typical use case for the Sidekiq line of products is to receive a great deal of I/Q data as efficiently as possible. This
high throughput use case would historically receive 4,096 bytes per block.

As of libsidekiq v4.6.0, the low latency receive stream mode (skiq_rx_stream_mode_low_latency) provides a smaller
block of I/Q samples from skiq_receive() more often and effectively lowers the latency from RF reception to host
CPU. This is especially useful when using lower sample rates that would historically take a relative long time to fill
up a 4kB I/Q block before delivering the samples to the host CPU and software application.

As of libsidekiq v4.7.0, the balanced stream mode (skiq_rx_stream_mode_balanced) is also available. The balanced
stream mode is a compromise between the high throughput and low latency stream modes. It results in a reduced
throughput relative to the optimized high throughput mode, but produces a larger number of samples per packet than
the low latency mode, thus achieving a higher throughput than the low latency mode. Most applications interested
in achieving the maximum throughput should use the default high throughput mode, which applications interested
in having a minimal latency should use the low latency mode. The balanced mode offers a compromise between the
low latency and high throughput options.

Refer to the Sidekiq API for additional details on the receive stream modes available. The API type and functions
follow:

• Type: skiq_rx_stream_mode_t

• Function: skiq_read_rx_stream_mode()

• Function: skiq_write_rx_stream_mode()

• Function: skiq_read_rx_block_size()

5.4. Developing CustomApplications with libsidekiq 49

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.4.20 Hotplug
As of libsidekiq v4.14.0, card hotplugging is now supported. Hotplug support will allow the user to connect and
remove cards, both physically and logically, during an application’s execution. Removing a card that is in use by the
application will result in adverse outcomes. New cards will be listed in calls to the skiq_get_cards() function. Cards
can then be initialized using skiq_enable_cards().

5.4.21 Exiting
When an application is ready to exit, the skiq_exit() function should be called. This function ensures that libsidekiq
shuts down gracefully. Any libsidekiq function should not be called within a signal handler, as there are various
mutexes utilized to control access to libsidekiq and these mutexes may already be locked prior to being attempted to
be called from within the context of the signal handler, which may result in deadlock. It is instead recommended to
clear a “running” flag within the signal handler and perform the appropriate Sidekiq shutdown within the context of
the main application. Refer to the tx_samples.c test application for an example of this.

Once skiq_exit() has been called, all follow-up calls to libsidekiq will fail with the exception of skiq_init() or
skiq_get_cards(). Calling skiq_init() will re-initialize the library and prepare it for usage by a host application.

As of libsidekiq v4.14.0, skiq_exit() is called automatically when the application using the library shuts down;
this is meant as a safety precaution to ensure that libsidekiq is properly cleaned up. If for some reason this is not
desired, the exit handler can be disabled using the skiq_set_exit_handler_state() function. This function must be
called before libsidekiq is initialized (for example, through skiq_init()). Despite the presence of this exit handler,
skiq_exit() should still be explicitly called in libsidekiq applications to ensure that initialized radios (and the library)
are cleaned up and powered down when no longer needed.

5.4.22 Critical Errors
It is possible that within libsidekiq, a critical error may be encountered. Once a critical error condition is detected in
libsidekiq, it is no longer safe to continue accessing libsidekiq. The application should be shutdown and the cause of
the error should be resolved. Continued operation on the Sidekiq may result in unpredictable / incorrect behavior.
The default behavior of libsidekiq when encountering a critical error is to exit. If an application wishes to override
the default behavior, a callback function can be registered via the skiq_register_critical_error_callback() API.
The function registered is then called if libsidekiq encounters a critical error. Note that continued access of libsidekiq
after a critical error has occurred can result in undefined behavior and should not be done.

5.5 Using Libsidekiq Remotely
Introduced in libsidekiq v4.16.0 is a mechanism for running libsidekiq applications on a client which connects to a
server supported by the network transport interface. Both the Sidekiq Z2 and Matchstiq Z3u support this function-
ality. The server physically contains the Sidekiq card. An overview of the deployment of such a system is depicted
below.

5.5. Using Libsidekiq Remotely 50

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 5.3: Sidekiq Remote Deployment

The server containing the Sidekiq card allows for applications to be run either remotely or locally on the server itself.
Management of the Sidekiq card resource is handled by the daemon. Client(s) communicate with a server via a
network interface, using a daemon API to send and receive messages.

5.5.1 Prerequisites
netconfig
After the integration of libtirpc into libsidekiq v4.17.5, network transport now requires a netconfig file be present
on the host. A default version of the contents of the netconfig file are provided below if the host operating system
does not include it. Since each operating system may handle this file differently, please contact Epiq Solutions for
installation instructions if needed.

Note: In a future release of libsidekiq a patch will be released to remove this requirement for using network
transport.

5.5. Using Libsidekiq Remotely 51

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Matchstiq Z3u
The z3u-usb-net- package must be at least at least version 1.0.0-1. To view the currently installed z3u-usb-net package
installed on the Z3u, run apt list z3u-usb-net.

In order to decrease the overall system latency and improve the streaming throughput, it is highly recommended to
use the Ethernet Emulation Model (EEM) USB networking protocol. To configure the USB network to use this profile,
run sudo fw_setenv usb_network_profile eem on the Z3u (refer to the “USB Network Configuration” section of the
Matchstiq Z3u Hardware User Manual). Note that after updating the profile, the system must be rebooted for the
settings to be applied.

Sidekiq Z2
A minimum BSP of v3.3.0 is required.

Client
Libsidekiq utilizes Open Network Computing (ONC) Remote Procedure Calls (RPC) to provide acceleration of a
handful of libsidekiq functions. As a result, the client system most have RPC bind installed. For instance, on a Debian
machine (such as Ubuntu 18.04), you can run sudo apt install rpcbind.

Only Linux on a x86-64 bit processor is currently supported. For support of alternative operating system support,
please contact Epiq Solutions.

5.5.2 Setup
Client System
Connecting to a remote Sidekiq card requires setting environment variables SKIQ_DAEMON_IP and
SKIQ_DAEMON_PORT with the server’s IP address and port (default port of 3417).

Server System
The server must be running the daemon process (skiq_daemon) prior to accepting client connections. The
skiq_daemon test application is provided for both the Sidekiq Z2 and the Matchstiq Z3u in the prebuilt applications
bundled with a Sidekiq release.

Matchstiq Z3u
For the Matchstiq Z3u, a Debian package, z3u-skiq-daemon is provided. This package includes the skiq_daemon
application as well as a service that is enabled to run automatically upon startup once the package is installed. Note
that the card ownership is managed by skiq_daemon such that running skiq_daemon will not prevent applications
from running natively on the Matchstiq Z3u if client does not have the Matchstiq Z3u card enabled. If it is desired
to disable skiq_daemon from running automatically upon startup, this can be disabled by running sudo systemctl
disable z3u-skiq-daemon on the Z3u.

5.5. Using Libsidekiq Remotely 52

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.5.3 Example Usage
Let’s consider an example deployment of running a Matchstiq Z3u connected to a Linux laptop. The Linux laptop
will be running an x86-64 bit version of libsidekiq.

Fig. 5.4: Sidekiq Remote Example Usage

Since the Matchstiq Z3u automatically starts skiq_daemon when powered on, there is no additional steps required to
setup the Matchstiq Z3u.

On the Linux laptop, we must configure the daemon IP address and port number. By default, the Matchstiq Z3u’s IP
address is 192.168.0.15. Additionally, the default port number of skiq_daemon is 3417. To configure the IP address
and port number, on the laptop, we can run:

$ export SKIQ_DAEMON_IP=192.168.0.15
$ export SKIQ_DAEMON_PORT=3417

Now, also on the Linux laptop, we can run the version_test application.

$./version_test
1 card(s) found: 0 in use, 1 available!
Card IDs currently used :
Card IDs currently available: 0
Info: initializing 1 card(s)...
SKIQ[18197]: <INFO> libsidekiq v4.16.0 (gXXXXXXXXX)
version_test[18197]: <INFO> Sidekiq card 0 is serial number=9X0J, Z3U (rev B) (part ES032201-B0-00)
version_test[18197]: <DEBUG> got port 3417, ip 192.168.0.15 card=0
version_test[18197]: <DEBUG> Allocating new hash table
version_test[18197]: <DEBUG> Allocating new connection 5620507011113330880
version_test[18197]: <DEBUG> Creating new RPC client
version_test[18197]: <DEBUG> Saving server card 0 (uid=5620507011113330880) to client card 0
version_test[18197]: <WARNING> FPGA capabilities indicate no support for reading/writing flash for card 0
version_test[18197]: <INFO> Sidekiq card 0 FPGA v3.14.0, (date 20081217, FIFO size unknown)
version_test[18197]: <INFO> Sidekiq card 0 is configured for an internal reference clock

* libsidekiq v4.16.0

(continues on next page)

5.5. Using Libsidekiq Remotely 53

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

* Sidekiq Card 0
Card

accelerometer present: true
part type: Z3U
part info: ES032201-B0-00
serial: 9X0J
xport: network

FPGA
version: 3.14.0
git hash: 0x1eefb308
build date (yymmddhh): 20081217
tx fifo size: unknown

RF
reference clock: internal
reference clock frequency: 40000000 Hz

version_test[18197]: <INFO> Unlocking card 0
version_test[18197]: <DEBUG> Hash table empty, destroying...

We can see that our remotely connected Matchstiq Z3u was detected by the version_test application running on the
Linux x86 host.

5.5.4 Detailed Network and Port Use
The skiq_daemon application uses both TCP and UDP sockets for use. The probe socket exists on port number 3417
and can be overwritten by launching the skiq_daemon with a different port. For example, if the probe port number
is desired to be 4000, you can start the skiq_daemon application with: ./skiq_daemon -p 4000. The client will need
to specify the daemon port as SKIQ_DAEMON_PORT as 4000 (export SKIQ_DAEMON_PORT=4000). When a card is in
use by libsidekiq, a TCP socket connection is established between the client and server. The port number used can
vary and typically begins from the SKIQ_DAEMON_PORT. The port in use for the control is established during the
probe procedure of the card. Additionally, a TCP and UDP socket connection are established to support RPC. The port
number in use to support RPC varies. Finally, when streaming samples, a UDP socket is used to stream the sample
data. The port number used in streaming can vary and typically begins from the SKIQ_DAEMON_PORT.

5.5.5 Limited Capabilities
The following features / capabilities are not supported in libsidekiq v4.17.4 via remote operation using the network
transport:

• reprogramming the RFIC via skiq_prog_rfic_from_file()

• reprogramming the FPGA via skiq_prog_fpga_from_file()

• accessing the flash via

– skiq_verify_fpga_config_from_flash()

– skiq_save_fpga_config_to_flash_slot()

– skiq_verify_fpga_config_in_flash_slot()

• frequency hopping via

– skiq_write_rx_freq_tune_mode()

– skiq_read_rx_freq_tune_mode()

5.5. Using Libsidekiq Remotely 54

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

– skiq_write_tx_freq_tune_mode()

– skiq_read_tx_freq_tune_mode()

– skiq_write_rx_freq_hop_list()

– skiq_read_rx_freq_hop_list()

– skiq_write_tx_freq_hop_list()

– skiq_read_tx_freq_hop_list()

– skiq_write_next_rx_freq_hop()

– skiq_write_next_tx_freq_hop()

– skiq_perform_rx_freq_hop()

– skiq_perform_tx_freq_hop()

– skiq_read_curr_rx_freq_hop()

– skiq_read_curr_tx_freq_hop()

– skiq_read_next_rx_freq_hop()

– skiq_read_next_tx_freq_hop()

• RX streaming on 1PPS or a trigger source via

– skiq_start_rx_streaming_on_1pps()

– skiq_start_rx_streaming_multi_on_trigger()

– skiq_stop_rx_streaming_on_1pps()

• RX stream configuration via

– skiq_set_rx_transfer_timeout()

– skiq_get_rx_transfer_timeout()

– skiq_write_rx_stream_mode()

– skiq_read_rx_stream_mode()

• Only a single remote card can be used

• Only a single handle can be used

• RF port selection is not supported on Z2

5.6 Configuring Sample Rate / Channel Bandwidth
5.6.1 API Ordering Dependency
For all platforms, it’s recommended to configure the sample rate before tuning the carrier or LO frequency. Failure
to do so may result in an invalid request for LO tuning due to the relationship between LO tune range and sample
rate. For example, tuning the LO frequency to 50MHz and then requesting a sample rate of 100Msps would result in
error:

Info: configured Rx LO freq to 50000000 Hz
Error: failed to set Rx sample rate or bandwidth(using default from last config file)...status is -22

5.6. Configuring Sample Rate / Channel Bandwidth 55

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.6.2 Configuring Sample Rate / Channel Bandwidth onMultiple Handles
Libsidekiq offers multiple API functions to configure the receive sample rate and bandwidth, such as
skiq_write_rx_sample_rate_and_bandwidth() and skiq_write_rx_sample_rate_and_bandwidth_multi(). When
configuring multiple receive handles, the skiq_write_rx_sample_rate_and_bandwidth_multi() function is preferred
as it is more performant than calling skiq_write_rx_sample_rate_and_bandwidth() multiple times.

5.6.3 SidekiqmPCIe, m.2, Stretch (m.2-2280), Z2, andMatchstiq Z3u only
This section describes the process of configuring the channel bandwidth in the Analog Devices AD9361/4 RFIC using
predefined FIR filter coefficients, the dependency of sample rate on bandwidth, and the additional filter configuration
settings used for a specific sample rate. It does not cover how the FIR is programmed but rather captures the
selection criteria and characteristics of the FIR coefficients. The same procedure is for both configuration the receive
channel bandwidth as well as the transmit channel bandwidth. The receive and transmit channel bandwidths can be
configured independently, but the sample rate can not.

The requested channel bandwidth along with the sample rate is used to select and configure the digital FIR coeffi-
cients. The ratio of requested channel bandwidth to sample rate is used to calculate the desired passband percentage
of the FIR filter. If the desired passband percentage does not match any of the passband percentages of the precom-
puted FIR filters, the precomputed FIR filter with the next incremented step in the passband percentage is selected.
In other words, if precomputed FIR coefficients in increments of 10% are available and a passband percentage of
65% is desired, then the FIR coefficients resulting in a passband of 70% would be selected.

Sample Rate and FIR Selection
As mentioned in the overview, the selection of the FIR filter coefficients on the percentage of requested channel
bandwidth to sample rate. Specifically, the passband percentage is computed as

𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = (𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ/𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒) * 100

In addition to the calculation of the passband percentage, the sample rate also impacts decimation (or interpolation)
factor built in to the FIR filter stage. The specific decimation / interpolation factor of the FIR as it relates to sample
rate is shown in Decimation / Interpolation Factor (page 56).

Table 5.5: Decimation / Interpolation Factor
Sample Rate (in samples/sec) FIR Decimation / In-

terpolation
Filter Lineup Total Decima-

tion/Interpolation
233000-13300000 4* RX/TX DEC3/INT3 enabled

RX/TX HB2 enabled
RX HB1 enabled

RX 48, TX 24

13300000-23000000 2 RX/TX DEC3/INT3 enabled
RX/TX HB2 enabled
RX HB1 enabled

RX 24, TX 12

23000000-40000000 2 RX/TX HB3 enabled
RX/TX HB2 enabled
RX HB1 enabled

RX 16, TX 8

40000000-46000000 2 RX/TX DEC3/INT3 enabled
RX HB2 enabled

RX 12, TX 6

46000000-61440000 2 RX/TX HB3 enabled
RX HB2 enabled

RX 8, TX 4

5.6. Configuring Sample Rate / Channel Bandwidth 56

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Note: When the TX FIR interpolation is configured to a value of 4, the TX FIR coefficients are automatically double
relative to other settings. This ensures a consistent output power level when moving from interpolation settings of 4
to 2 (ex. changing sample rates from <13.3Msps to >13.3Msps).

Since the decimation factor is part of the FIR filter configuration, the actual passband percentage is impacted by the
decimation factor. Specifically, the actual passband percentage of a specific filter is

𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 = 𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 * 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟

The impact of the decimation factor is accounted for when selecting the predefined FIR filter based on the desired
channel bandwidth.

Number of Filter Taps
The number of taps available is limited by the RF IC and the configured sample rate. The RF IC can calculate 16 taps
per clock cycle, and depending on the sample rate, the resulting number of taps available for the FIR is either 64, 96,
or 128. The number of taps used for specific sample rates are shown in Number of Filter Taps (page 57).

Table 5.6: Number of Filter Taps
Sample Rate (in samples/sec) # of RX Filter Taps # of TX Filter Taps
233000 – 40000000 128 128
40000000 – 46000000 96 96
46000000 – 61440000 64 64

Filter Selection Example
Suppose a sample rate of 10Msps and a channel bandwidth of 6.5MHz is requested.

𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = (6500000/10000000) * 100 = 65

With a sample rate of 10Msps, the decimation factor is 4. In order to achieve an actual passband of 6.5MHz, the FIR
filter passband is calculated as

𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 = 𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑_𝑝𝑒𝑟𝑐𝑒𝑛𝑡/𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟

= 65/4

= 16.25

However, there is not a FIR filter with a passband of 16.25. As a result, the filter selected is the next one available,
greater than the requested passband. In this case, a filter passband of 16.5 is selected.

Additionally, since the sample rate is <40Msps, the maximum of 128 filter taps can be used. Therefore, the filter
used in this case is fir_128_tap_165_passband. The actual resulting bandwidth is calculated as follows

𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 = 𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 * 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒

= 16.5 * 4 * 10000000
= 6.6MHz

Custom Filter Coefficients
The ability to load custom FIR coefficients is supported through the skiq_write_rfic_rx_fir_coeffs() /
skiq_write_rfic_tx_fir_coeffs() API functions. The decimation (interpolation) factor of the FIR and the

5.6. Configuring Sample Rate / Channel Bandwidth 57

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

number of taps available is determined by the sample rate and cannot be changed. Therefore, the sam-
ple rate must be configured prior to the custom FIR configuration. The FIR configuration parameters
can be queried via the skiq_read_rfic_rx_fir_config() / skiq_read_rfic_tx_fir_config() APIs. If cus-
tom FIR coefficients are used, the bandwidth reported via skiq_read_rx_sample_rate_and_bandwidth() /
skiq_read_tx_sample_rate_and_bandwidth() are no longer valid.

Filter Passband Available
The FIR filter passbands currently available are summarized in Available Filters (page 58). Note the FIR passband
listed is for a decimation factor of 1.

Table 5.7: Available Filters
Start Passband End Passband Step Size Number of Filters
0.1% 0.1% N/A 1
0.5% 50% 0.5% 100

Analog Filtering
In addition to the filtering described above, Sidekiqs based on the AD9361/4 RFIC allow users to configure
analog filters present on the Rx/Tx paths. These low pass filters are located right before the ADC for the
Rx path and after the DAC for the Tx path. By default, the analog filter bandwidth is automatically con-
figured via skiq_write_rx_sample_rate_and_bandwidth(), or skiq_write_tx_sample_rate_and_bandwidth(),
but users may override the configuration by calling skiq_write_rx_analog_filter_bandwidth(), or
skiq_write_tx_analog_filter_bandwidth() API functions after configuring the sample rate and bandwidth.

SidekiqmPCIe andMatchstiq Z3u
When operating in dual channel mode, the maximum supported sample rate of Sidekiq mPCIe and Matchstiq Z3u is
limited to 30.72 Msps. In single channel mode, the full maximum sample rate of 61.44 Msps is supported.

5.6.4 Sidekiq X2 and X4
The Sidekiq X2 and X4 RF transceivers support a wide variety of sample rate and bandwidth combinations out of
the box with libsidekiq. The following tables list the rates that are directly achievable and can be configured with
the libsidekiq API. In addition to the provided rates, both decimation and user generated profiles can be utilized to
meet specific application needs. Please contact Epiq Solutions via the support forums [5] (page 8) if there is more
information required regarding capability and configuration of sample rates / bandwidth.

Built-in Profiles
The next subsections capture the sample rate and bandwidth settings supported as of libsidekiq v4.12.0. These
profiles and configuration parameters were generated using Analog Devices’ AD9371/AD9379 Filter Wizard.

Sidekiq X2 Built-in Profiles

The following two tables show the full list of available receive and transmit sample rates available in libsidekiq
v4.12.0 for a Sidekiq X2. Some sample rates have been available in previous releases and are noted as such.

5.6. Configuring Sample Rate / Channel Bandwidth 58

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.8: Sidekiq X2 Receive Sample Rates
RX Input Rate (Msps) RF Bandwidth (MHz) Supported Handle(s) Since
245.76 200 B1 v4.10.0
245.76 100 B1 v4.10.0
153.6 100 A1/A2/B1 v4.10.0
122.88 100 A1/A2/B1 v4.10.0
100 82 A1/A2/B1 v4.10.0
73.728 60.456 / 30.228 A1/A2/B1 v4.10.0
61.44 50 A1/A2/B1 v4.10.0
61.44 25 A1/A2/B1 v4.10.0
50 41 A1/A2/B1 v4.10.0
36.864 30.228 A1/A2 v4.10.0
30.72 25 / 20 / 18 A1/A2 v4.10.0

Table 5.9: Sidekiq X2 Transmit Sample Rates
TxOutput Rate (Msps) RF Bandwidth (MHz) Supported Handle(s) Since
153.6 100 A1/A2 v4.10.0
122.88 100 A1/A2 v4.10.0
100 82 A1/A2 v4.10.0
73.728 60.456 A1/A2 v4.10.0
61.44 50 A1/A2 v4.10.0
50 41 A1/A2 v4.10.0

Sidekiq X4 Built-in Profiles

The following two tables show the full list of available receive and transmit sample rates available in libsidekiq
v4.12.0 for a Sidekiq X4. Some sample rates have been available in previous releases and are noted as such.

5.6. Configuring Sample Rate / Channel Bandwidth 59

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.10: Sidekiq X4 Receive Sample Rates
Rx Input Rate (Msps) RF Bandwidth (MHz) Supported Handle(s) Since
500 450 / 400 C1/D1 v4.11.1
491.52 450 / 400 C1/D1 v4.11.1
250 200 A1/A2/B1/B2/C1/D1 v4.10.0
250 100 A1/A2/B1/B2/C1/D1 v4.11.1
245.76 200 A1/A2/B1/B2/C1/D1 v4.9.0
245.76 100 A1/A2/B1/B2/C1/D1 v4.11.1
200 164 A1/A2/B1/B2/C1/D1 v4.12.0
153.6 100 A1/A2/B1/B2/C1/D1 v4.11.1
122.88 100 A1/A2/B1/B2/C1/D1 v4.9.0
122.88 72 / 64 / 61.44 A1/A2/B1/B2/C1/D1 v4.11.1
100 82 A1/A2/B1/B2/C1/D1 v4.9.0
76.8 30.72 A1/A2/B1/B2/C1/D1 v4.11.1
73.728 60.456 / 30.228 A1/A2/B1/B2/C1/D1 v4.11.1
61.44 50 A1/A2/B1/B2/C1/D1 v4.9.0
61.44 25 A1/A2/B1/B2/C1/D1 v4.11.1
50 41 A1/A2/B1/B2/C1/D1 v4.10.1
50 20 A1/A2/B1/B2/C1/D1 v4.11.1

Table 5.11: Sidekiq X4 Transmit Sample Rates
TxOutput Rate (Msps) RF Bandwidth (MHz) Supported Handle(s)1 Since
500 450 / 400 A1/A2/B1/B2 v4.12.0
491.52 450 / 400 A1/A2/B1/B2 v4.12.0
250 200 A1/A2/B1/B2 v4.10.0
250 100 A1/A2/B1/B2 v4.11.1
245.76 200 A1/A2/B1/B2 v4.9.0
245.76 100 A1/A2/B1/B2 v4.11.1
200 164 A1/A2/B1/B2 v4.12.0
153.6 100 A1/A2/B1/B2 v4.11.1
122.88 100 A1/A2/B1/B2 v4.9.0
122.88 72 / 64 / 61.44 A1/A2/B1/B2 v4.11.1
100 82 A1/A2/B1/B2 v4.9.0
76.8 30.72 A1/A2/B1/B2 v4.11.1
73.728 60.456 / 30.228 A1/A2/B1/B2 v4.11.1
61.44 50 A1/A2/B1/B2 v4.9.0
61.44 25 A1/A2/B1/B2 v4.11.1
50 41 A1/A2/B1/B2 v4.10.1
50 20 A1/A2/B1/B2 v4.11.1

Note: Transmit only applications at rates >= 250Msps additionally requires configuring RxC1 or RxD1 to the
desired sample rate.

1 Streaming transmit samples over PCIe is only available for handle A1 or handle pairs A1/A2 and A1/B1

5.6. Configuring Sample Rate / Channel Bandwidth 60

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Options for Sample Decimation

Starting with libsidekiq v4.10.0 and FPGA bitstream v3.12.0, both Sidekiq X2 and Sidekiq X4 have build options
that allow the use of sample decimation. The build options are defined in more detail in each product’s respective
PDK documentation. The use of the decimator happens automatically when a receive sample rate is configured by
the user. The sample rate selection algorithm attempts to find the best profile and decimation settings to meet the
requested sample rate and RF bandwidth. The equivalent RF bandwidth after the decimation stage is the minimum
of the RF bandwidth before the stage and the decimated sample rate. So an RF bandwidth of 40MHz for a signal
sampled at 50Msps, will have an equivalent RF bandwidth of 25MHz after one stage of decimation since (50 / 2 <
40).

The default build configuration for the decimation offers the functionality on RxA1 and RxA2 with up to 6 stages (i.e.
decimate by 64) available. For example, if 50 Msamples/sec is available and the receive handle supports decimation
of 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , and 1
64 , then 25, 12.5, 6.25, 3.125, 1.5625, and 0.78125 Msps are also available.

Runtime Loaded User Generated Profiles
In addition to the built-in profiles, X2 and X4 users can create custom profiles using the Analog Devices profile gen-
eration tool. At the time of the libsidekiq v4.17.0 release, there is no support for generating or using custom profiles
with Sidekiq NV100. The following sections outline the procedure for creating and importing a user-generated profile
at runtime.

Determine Dev Clock Settings for ADI Profile Tool

Use the Sidekiq sample rate utility test_sample_rate test application (as shown below) to determine the device clock
settings. Below is an example of running the application with a desired sample rate of 73.728 MHz.

$ /tmp/test_sample_rate -c 1 -r 73728000
Info: initializing card 1...
SKIQ[32448]: <INFO> libsidekiq 4.8.255-dev (g684832db)
test_sample_rate[32448]: <INFO> Sidekiq card 1 is serial number=7T25, hardware reserved (rev 1), product␣
→˓reserved (X2) (part ES020201-B2-00)
test_sample_rate[32448]: <INFO> Sidekiq card 1 FPGA v3.11.0, (date 18121917, FIFO size 64k)
test_sample_rate[32448]: <INFO> Sidekiq card 1 is configured for host reference clock
test_sample_rate[32448]: <INFO> Loading calibration data for Sidekiq X2, card 1
Info: exact sample rate requested (73728000 Hz) is possible!
Debug: VCXO 153600000 FPGA div 2

Info: Use dev clock frequency 147456000 with a divider of 2

test_sample_rate[32448]: <INFO> unlocking card 1

Create NewProfile

Once the appropriate Dev Clock for Sidekiq has been determined, the AD9371 (Sidekiq X2) or ADRV9009 (Sidekiq
X4) Filter Wizard can be used to generate a profile that can be loaded as outlined below.

1. Launch the Filter Wizard tool (note: v1.10 is the currently supported version for X2, v2.4 for X4).

2. If using Sidekiq X4, set the Part Number field to ADRV9009 (n/a for X2).

3. Configure the Tx Profile, ORx Profile (skiq_rx_hdl_B1 for X2), Rx Profile, and SnRx Profile fields to the
desired sample rate and filter characteristics. Currently, RX / ORx / TX sample rates must match. The below
example uses a sample rate of 73.728 Msps.

5.6. Configuring Sample Rate / Channel Bandwidth 61

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

4. Press the Generate Profiles button and ensure that the profiles are valid as indicated by the status bar.

5. Configure the Ref Clock Divider and Device Clock (MHz) settings to the values generated by the
test_sample_rate application. These fields are located in the bottom left hand side of the main screen. In
our example, the Ref Clock Divider is set to 2 and the Device Clock is set to 147.456 MHz.

6. Generate the profile file with the Output Profiles to File button.

Fig. 5.5: Analog Devices Profile Generator (Sidekiq X2)

5.6. Configuring Sample Rate / Channel Bandwidth 62

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 5.6: Analog Devices Profile Generator (Sidekiq X4)

Configure Sidekiq with Profile

To configure the radio with the profile created, after performing the initialization and default configuration with the
skiq_init() API, the skiq_prog_rfic_from_file() API. This configures the radio with the sample rate defined in
the profile as well as configuring the various filter settings. This process results in a full reset and re-initialization
of the radio, so any previous radio configuration (outside of the sample rate and bandwidth) must be applied after
configuring from the profile. It is recommended to perform the programming from the file immediately after ini-
tialization, prior to any radio configuration. Note that modifying the sample rate and/or bandwidth settings with
the skiq_write_rx_sample_rate_and_bandwidth() or skiq_write_tx_sample_rate_and_bandwidth() will result any
previously loaded profile to be overwritten.

5.6.5 Sidekiq NV100
The Sidekiq NV100 RF transceivers support a wide variety of sample rate and bandwidth combinations out of the
box with libsidekiq. The following table lists the rates that are directly achievable and can be configured with the
libsidekiq API. Even though the NV100 has two receivers and two transmitters, there are clocking constraints between
handles that restrict sample rate configuration. As of libsidekiq v4.17.0, both receivers must be configured to the
same sample rate. The same restriction applies to both transmitters.

5.6. Configuring Sample Rate / Channel Bandwidth 63

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Due to limitations of the interpolation/decimation rate supported in the datapath, the Sidekiq NV100 (using the
ADRV9004 RFIC) has a list of “dead” zones in which certain sample rates cannot be configured. Please see the “Dead
Zone Frequency Ranges” table of the ADRV9001 User Guide [15] (page 8) for more information. Please contact Epiq
Solutions via the support forums [5] (page 8) if there are questions regarding capability and configuration of sample
rates and RF bandwidths. Users may also request additional sample rates via the support forums.

Sidekiq NV100 Built-in Profiles
The following table shows the full list of available receive and transmit sample rates available in libsidekiq v4.17.0
for a Sidekiq NV100. If a sample rate is listed here, it is available for both receive and transmit paths. At this time,
all receivers and transmitters are configured for the same sample rate (unless the user is configuring from the list
of disparate rates). However, the RF receive bandwidth is configurable per-handle between 5% and 80% in 0.5%
increments.

Table 5.12: Sidekiq NV100 Sample Rates
Rx/Tx Sample Rate (Msps)
0.541667
1.92
2.4576
2.8
3.84
4
4.9152
5.6
7.68
9.8304
10
11.2
15.36
16
20
21.6667
22
23.04
30.72
40
61.44

The following table shows the full list of disparate sample rates available in libsidekiq v4.17.0 for a Sidekiq NV100.
If a sample rate combination is listed there, the receivers can be configured at the input rate while the transmitters
can be configured at the output rate.

Table 5.13: Sidekiq NV100 Sample Rates
Input Rate (Msps) Output Rate (Msps)
1.4 5.6
11.2 5.6

The RF receive bandwidth is configurable per-handle between 5% and 80% in 0.5% increments with additional
values above 80% listed in the subsequent table.

5.6. Configuring Sample Rate / Channel Bandwidth 64

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 5.14: Sidekiq NV100 Supported Rx Bandwidth Percentages
Bandwidth % of Sample Rate
3
5
5.5
.
. (Between 5 and 80% possible in 0.5% increments)
.
75.5
80
86
89
95
96
99

5.7 Example X4Use Cases: Rx
This section outlines common use cases possible with Sidekiq X4, demonstrating how they can be achieved with the
supplied test applications. For users developing an application from scratch, the equivalent sequence of API calls
is provided. See the rx_samples_minimal.c and rx_samples.c sample applications in the test_apps/ directory for
example usage.

Caution: Receiving at high sample rates can be RAM & disk intensive. Performance is dependent on the host
platform.

5.7.1 Receive: single channel, up to 200MHz IBW
test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 850000000 -r 245760000 -b 200000000 --handle=A1

• where handle can be any of the following: A1,A2,B1,B2,C1,D1

Note: libsidekiq will use the provided sample rate and bandwidth arguments to select the RFIC profile best meeting
the constraints. If the selected rate/bandwidth is not an exact match, it may be desirable to define and import a
custom profile. Please see the Runtime Loaded User Generated Profiles (page 61) section for more details.

The same can be achieved using the following sequence of API functions:

skiq_init()
skiq_write_rx_sample_rate_and_bandwidth(card, handle, rate, bandwidth)
skiq_write_rx_LO_freq(card, handle, frequency)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

5.7. Example X4Use Cases: Rx 65

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.7.2 Receive: single channel, up to 400MHz IBW
test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 850000000 -r 491520000 -b 400000000 --handle=C1

• where handle can be any of the following: C1,D1

The same can be achieved using the following sequence of API functions:

skiq_init()
skiq_write_rx_sample_rate_and_bandwidth(card, handle, rate, bandwidth)
skiq_write_rx_LO_freq(card, handle, frequency)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

5.7.3 Receive: Two phase coherent channels up to 200MHz IBW
test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 850000000,850000000 -r 250000000,250000000 -b
200000000,200000000 --handle=A1,A2

• where handle can be any two of the following: A1,A2,B1,B2

The same can be achieved using the following sequence of API functions:

skiq_init()
skiq_write_rx_sample_rate_and_bandwidth_multi(card, handles, nr_handles, rates, bandwidths)
skiq_write_rx_LO_freq(card, handle #1)
skiq_write_rx_LO_freq(card, handle #2)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

Caution: Phase coherent receive cannot be used in the conjunction with the decimator. A warning will be issued
when this condition is encountered, but please be aware of the limitation.

5.7.4 Receive: Two independently tunable channels different sample rate* up to 200MHz IBW
test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 750000000,850000000 -r 250000000,250000000 -b
61440000,122880000 --handle=A1,B2

• where handle can be two of the following: A1,A2,B1,B2, with the constraint that one handle must be from the
“A” group and one from “B”.

The same can be achieved using the following sequence of API functions:

skiq_init
skiq_write_rx_sample_rate_and_bandwidth_multi(card, handles, nr_handles, rates, bandwidths)
skiq_write_rx_LO_freq(card, handle #1)
skiq_write_rx_LO_freq(card, handle #2)
skiq_start_rx_streaming_multi_immediate()

(continues on next page)

5.7. Example X4Use Cases: Rx 66

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

while(receiving)
skiq_receive(card, handle, rx_block, len)

skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

Note: * Different sample rates can be used per handle, but with the following caveats:

1. The lower rate must be on a handle supporting decimation. (A1 or A2)

2. Rates must be < 153.6Msps

3. The lower rate must be a factor of the higher rate

Caution: Phase coherent receive cannot be used in this scenario since decimation is active.

5.8 Example NV100Use Cases: Rx
This section outlines common use cases possible with Sidekiq NV100, demonstrating how they can be achieved with
the supplied test applications. For users developing an application from scratch, the equivalent sequence of API calls
is provided. See the rx_samples_minimal.c and rx_samples.c sample applications in the test_apps/ directory for
example usage.

Caution: Receiving at high sample rates can be RAM & disk intensive. Performance is dependent on the host
platform.

5.8.1 Receive: single channel, up to 50MHz IBW
The following example captures samples at 61.44Msps with a bandwidth of 50MHz, at a center frequency of 850MHz.

test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 850000000 -r 61440000 -b 50000000 --handle=A1

• where handle can be any of the following: A1,A2,B1

Note: libsidekiq will use the provided sample rate and bandwidth arguments to select the RFIC profile best meeting
the constraints. Please contact Epiq Solutions if additional rates are desired.

The same can be achieved using the following sequence of API functions:

skiq_init(card)
skiq_write_rx_sample_rate_and_bandwidth(card, handle, rate, bandwidth)
skiq_write_rx_LO_freq(card, handle, frequency)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

5.8. Example NV100Use Cases: Rx 67

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.8.2 Receive: two phase coherent channels, up to 50MHz IBW
The following example captures phase coherent samples for two channels at 61.44Msps with a bandwidth of 50MHz,
at a center frequency of 850MHz.

test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 850000000,850000000 -r 61440000,61440000 -b
50000000,50000000 --handle=A1,A2

The same can be achieved using the following sequence of API functions:

skiq_init(card)
skiq_write_rx_sample_rate_and_bandwidth_multi(card, handles, nr_handles, rates, bandwidths)
skiq_write_chan_mode(chan_mode_dual)
skiq_write_rx_LO_freq(card, handle #1 or handle #2)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

Note: skiq_write_rx_sample_rate_and_bandwidth_multi() is the preferred API function for configuring multiple
handles. Please refer to Configuring Sample Rate / Channel Bandwidth (page 55) for more information.

5.8.3 Receive: two independently tunable channels, same sample rate, up to 50MHz IBW
The following example captures samples for two channels at 61.44Msps with a bandwidth of 50MHz, tuned to
750MHz and 850MHz respectively.

test_apps/rx_samples_minimal -c 0 -d /tmp/iq_output -f 750000000,850000000 -r 61440000,61440000 -b
50000000,50000000 --handle=A1,B1

The same can be achieved using the following sequence of API functions:

skiq_init(card)
skiq_write_rx_sample_rate_and_bandwidth_multi(card, handles, nr_handles, rates, bandwidths)
skiq_write_rx_LO_freq(card, handle #1)
skiq_write_rx_LO_freq(card, handle #2)
skiq_start_rx_streaming_multi_immediate()
while(receiving)

skiq_receive(card, handle, rx_block, len)
skiq_stop_rx_streaming_multi_immediate()
skiq_exit()

5.9 Sidekiq API
The Doxygen output is included in the SDK bundle as HTML and PDF. Please refer to sidekiq_sdk_current/doc/html
or sidekiq_sdk_current/doc/Sidekiq_API_4.17.0.pdf for information regarding the API.

5.9. Sidekiq API 68

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

5.10 FPGA user_app examples
5.10.1 Transmitting samples from FPGAmemory
Starting with FPGA PDK reference v3.12.0, the FPGA offers a way to allow signal playback (transmit)
from its internal memories (BRAM) independent of transport. There is an accompanying test application
(tx_samples_from_FPGA_RAM) included in the Sidekiq SDK bundle to showcase this FPGA user_app interface. It
uses FPGA user registers and libsidekiq public API functions to load samples from file(s) to each desired transmit
handle’s associated FPGA memory and begin playing back those circular sample buffers. On the Sidekiq X4, this
test application and the user_app interface may be used to demonstrate transmitting 4 channels in a phase coherent
manner.

The software test application relies on support from the FPGA user_app to have those Tx Internal Memory Interfaces
at the appropriate addresses and sizes. If a user changes the user_app implementation, it is up to them to make
changes in the software test application accordingly.

The tx_samples_from_FPGA_RAM application takes most of the same arguments that the tx_samples application does.
The --source argument copies the sample contents from the file into ALL specified transmit handles, effectively
transmitting the sample waveform. The --prefix argument is a convenience argument to specify a file prefix used
to copy sample contents from different files into their corresponding transmit handles’ internal memory interface in
the FPGA user_app.

Section 7.3.7 of the Sidekiq X2 / X4 FPGA Developers Manual (v3.12.0) discusses this transmit memory interface
from the FPGA’s point of view. At v3.12.0 of the PDK, this user_app addition is only available with stock Sidekiq X2
/ X4 FPGA bitstreams and may be disabled during synthesis if desired by an FPGA developer. It is up to the user to
ensure that both sides of this interface are working should any changes be made. This addition may not be enabled
by default in future PDKs.

5.10. FPGA user_app examples 69

Epiq Solutions Proprietary

6 Hosts & Platforms

6.1 Windows Sidekiq Development
As of libsidekiq v4.4.0, the Sidekiq mPCIe and Sidekiq M.2 hardware is supported under Windows 7 and includes a
signed device driver. The remainder of this section shows the steps necessary to install the SDK and associated device
drivers under Windows 7. The Windows installer is available at the same location as the Linux release bundles on
the Epiq Support forum.

Note: Libsidekiq no longer supports Windows 7 as of libsidekiq v4.11.0 as Microsoft ended Windows 7 support on
January 14, 2020.

As of libsidekiq v4.6.0, the existing Sidekiq mPCIe and Sidekiq M.2 hardware is supported under Windows 10 as
well as Windows 7. In addition, the Sidekiq X2 hardware is also supported. Installation of the SDK under Windows
10 is very similar to that of the Windows 7 installation.

6.1.1 Install the SDK
The Windows installer is a self-extracting and executing file. When run, it will present a series of dialog boxes similar
to those which follow.

70

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.1: Windows Installer Dialog

Choose Next.

Choose the components to install. It is recommended to install all of the components. The VC++ Redistributable
libraries may already be installed if the target machine also has an installation of Microsoft Visual Studio present.

6.1. Windows Sidekiq Development 71

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.2: Windows Installer Components Dialog

Choose the installation directory and wait for the installation to complete.

6.1. Windows Sidekiq Development 72

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.3: Windows Installer Path Dialog

If the VC++ Redistributables component was selected for installation, the installer will launch another installation
of the VC++ libraries.

Fig. 6.4: Windows MSVC++ Redistributable Dialog

6.1. Windows Sidekiq Development 73

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

6.1.2 Sidekiq Device Configuration
When the Sidekiq is inserted into the computer, the Device Manager will detect the hardware but no driver will be
loaded. The M.2 or PCIe interface for the Sidekiq will be reported as a “PCI Data Acquisition and Signal Processing
Controller” and the USB interface will be reported as a “Sidekiq”, as shown in Windows Detection of Sidekiq (page 74).

Fig. 6.5: Windows Detection of Sidekiq

Windows® will prompt to select a driver, or by right-clicking on the “PCI Data Acquisition and Signal Processing
Controller” and the “Sidekiq” one may choose to install or “Update Driver Software. . . ” for each interface.

Select the Sidekiq PCIe Driver Software
When prompted to search for the device driver software, choose “Browse my computer for driver software”, as shown
in Windows Driver Search (page 75).

6.1. Windows Sidekiq Development 74

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.6: Windows Driver Search

Next, choose the path to the driver package, containing the DMADriver.sys file, provided by Epiq Solutions. For
example, refer to Windows Driver Package Selection (page 76).

6.1. Windows Sidekiq Development 75

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.7: Windows Driver Package Selection

Agree to install the driver. The Device Manager will then rename the “PCI Data Acquisition and Signal Processing
Controller” as a “PCI Express DMA Device”, as shown in Windows Successful DMA Driver Installation (page 77).

6.1. Windows Sidekiq Development 76

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.8: Windows Successful DMA Driver Installation

Select the USBDriver Software
Similarly, the “Sidekiq” device driver for the USB interface may be installed by selecting the path to its Setup Infor-
mation file (*.inf), which is installed in the usb_driver sub-directory of the Sidekiq SDK installation directory. Refer
to to see how both Sidekiq devices should appear in Device Manager.

6.1. Windows Sidekiq Development 77

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.9: Windows Successful USB Driver Installation

It should now be possible to execute applications built against the SDR library (libsidekiq__mingw64.a) to commu-
nicate with the device hardware.

6.1.3 WindowsDevelopment Tools
The MinGW-64 or Microsoft Visual Studio compilers may be used with libsidekiq to write applications to control the
Sidekiq radio. These toolchains are available from the following, respective, links:

http://www.msys2.org/

https://www.visualstudio.com/

MinGW-64
The MinGW-64 compiler is installed from the MSYS2 environment using the pacman package manager. The test
applications were built using MinGW gcc version 7.2.0. Since MinGW-64 is designed to support the GCC compiler on
Windows systems, the user can also leverage libsidekiq’s arg_parser library to allow easier working with command
line arguments in applications.

Visual Studio
The Visual Studio test applications have been built using Visual Studio 2015 Community Edition. Applications built
with Visual Studio only need to link against libsidekiq__mingw64.a and cannot use, nor need to use, arg_parser.a

6.1. Windows Sidekiq Development 78

http://www.msys2.org/
https://www.visualstudio.com/

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Note: The Visual Studio solution files may require the paths to the header files and library to be updated.

Fig. 6.10: Visual Studio - Additional Include Directories

6.1. Windows Sidekiq Development 79

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Fig. 6.11: Visual Studio - Additional Dependencies

6.2 Developing for Alternative Host Platforms
Sidekiq can be used on a wide variety of host platforms. The following sections provide a brief overview of how
to use libsidekiq on the various platforms. For detailed information on a specific host platform, please contact Epiq
Solutions’ Support, [5] (page 8).

6.2.1 Supported Architectures
The Sidekiq SDK currently supports host platforms with the following CPU architectures: 64-bit x86, 32-bit x86, ARM
Cortex A9 (specifically validated on Freescale’s i.MX6), and 64-bit ARM (specifically validated on NVIDIA’s Jetson
TX1/TX2/Xavier). Prebuilt test applications for each of the architectures are located within their own subdirectory
under the prebuilt_apps directory of the SDK and also available for download, [5] (page 8). For example, the
binaries for a 64-bit x86 processor is located at: sidekiq_sdk_current/prebuilt_apps/x86_64.gcc.

6.2.2 Building Test Applications
The Sidekiq SDK provides versions of libsidekiq for each of the supported architectures. Additionally, the test ap-
plications can be compiled for any of the these architectures. The steps for building a specific host platform are as
follows:

1. Change to the directory where the SDK was previously uncompressed.

$ cd /home/sidekiq/sidekiq_sdk_v4.17.x/

2. Change directories to the test_apps directory and run make, using BUILD_CONFIG to specify the host target.

6.2. Developing for Alternative Host Platforms 80

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

As of Sidekiq SDK release v3.0.0, a libc version of 2.11 or greater is required on x86 64-bit and 32-bit platforms.
Using a previous version of libc may result in linking errors during build. Verification of the version of libc on the
build system can be performed by locating libc.so.6, executing it, and taking note of the version. As a point of
reference, Ubuntu 12.04 and later, as well as CentOS 6.7 and later currently satisfy this requirement.

Deploying Applications
As of Sidekiq SDK release v4.0.0, both glib-2.0 and libusb open source libraries are leveraged within libsidekiq. As
of Sidekiq SDK release v4.17.5, the libtirpc open source library is also leveraged within libsidekiq. Correspondingly,
the glib-2.0 (LGPL) and libusb (LGPL) license agreements are maintained by linking to them dynamically and the
libtirpc (BSD) license agreement is maintained by acknowledging it in this documentation. There are two approaches
to deploying applications built against libsidekiq, glib-2.0, libusb, and libtirpc: one approach is used when the
application is executed on the build machine (i.e. the SDK is installed), while the other approach is used when the
application is executed on a target machine (i.e. the SDK is not installed).

In the first approach, the SDK contains all of the requisite dynamic libraries in the directory $SDK/lib/support/
$BUILD_CONFIG/usr/lib/epiq. The $SDK/test_apps/Makefile has all of the necessary flags for building and execut-
ing on the build machine. After final linking, applications reference the glib-2.0, libusb, and libtirpc libraries in the
SDK’s preceding support directory.

In the second approach, the necessary glib-2.0, libusb, and libtirpc libraries are required to be installed on the target
machine at a known location: /usr/lib/epiq. The SDK provides these libraries as packages for all supported plat-
forms in the form of DEB and RPM files. Use Linker Flags for glib-2.0, libusb, and libtirpc when deploying applications
on target machines (page 81) to determine which package should be installed on the target machine.

Note:

A run-time package is not required for the Matchstiq S10 as long as the unit is updated to support Sidekiq SDK
release v3.0.0, v4.0.0 for libusb, or v4.17.5 for libtirpc as the libraries

are included by default.

With the introduction of glib-2.0, libusb, and libtirpc as support libraries, there are additional linker flags required
when building and linking with libsidekiq. All of the required flags are captured in the test_apps/Makefile, but are
repeated here for clarity. These flags are used whenever deploying applications to a target machine. Depending on the
BUILD_CONFIG, use these compiler flags (assuming SDK references its current location):

Table 6.1: Linker Flags for glib-2.0, libusb, and libtirpc when de-
ploying applications on target machines

BUILD_CONFIG Linker Flags
x86_64.gcc

-L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \
-lglib-2.0 -lusb-1.0 -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

x86_32.gcc
-L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \
-lglib-2.0 -lusb-1.0 -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

Continued on next page

6.2. Developing for Alternative Host Platforms 81

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 6.1 – continued from previous page
BUILD_CONFIG Linker Flags
aarch64.gcc6.3

-L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \
-lglib-2.0 -lusb-1.0 -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

arm_cortex-
a9.gcc4.8_gnueabihf_linux -L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \

-lglib-2.0 -lusb-1.0 -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

arm_cortex-
a9.gcc4.8_uclibc_openwrt -L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \

-lglib-2.0 -lintl -liconv -lusb-1.0 -ltirpc \
-lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

arm_cortex-
a9.gcc4.9.2_gnueabi -L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \

-liio -lz -lxml2 -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

arm_cortex-
a9.gcc7.2.1_gnueabihf
(supported starting in v4.9.5)

-L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \
-liio -ltirpc -lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

arm_cortex-
a9.gcc5.2_glibc_openwrt -L $(SDK)/lib/support/$(BUILD_CONFIG)/usr/lib/epiq \

-lglib-2.0 -lintl -liconv -lusb-1.0 -ltirpc \
-lpthread -lrt -lm \
-Wl,--enable-new-dtags \
-Wl,-rpath,/usr/lib/epiq

Table 6.2: Run-time Library Packages
Distro Pack-
aging Type

BUILD_CONFIG Run-time Library Package

Debian x86_64.gcc sidekiq-shared-libs-x86-64.gcc_4.17.x_amd64.deb
x86_32.gcc sidekiq-shared-libs-x86-32.gcc_4.17.x_amd64.deb

Redhat (RPM) x86_64.gcc sidekiq-shared-libs-x86_64.gcc-4.17.x-1.x86_64.rpm
x86_32.gcc sidekiq-shared-libs-x86_32.gcc-4.17.x-1.x86_64.rpm

Note: A developer may replace glib-2.0, libusb, or libtirpc at their discretion with the understanding that libsidekiq
is built and tested with glib version 2.42.1, libusb-1.0.20, and libtirpc-1.3.3.

6.2. Developing for Alternative Host Platforms 82

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

6.2.3 Additional Dependencies
In order for a Sidekiq card to be functional on a specific host platform, there are additional drivers (dmadriver.ko,
skiq_platform_device.ko, and pci_manager.ko) that libsidekiq depends on. The driver modules are pre-installed on
the Sidekiq PDK laptop and any updates are included with the system update. If an alternative host platform is being
targeted, please contact Epiq Solutions Support, [5] (page 8), for driver availability and support for the alternative
host platform.

Note: In order to use the GPS / UART functionality of a Sidekiq Stretch, the user must also make certain that
sidekiq_uart.ko and sidekiq_gps.ko are available for the target platform.

Sidekiq Stretch UART
The Sidekiq Stretch’s on-board GPS can provide NMEA-0183 messages through a UART device on the host system.
When both the sidekiq_uart.ko kernel module and the dmadriver.ko (v5.3.0 or later) kernel module are loaded, a
UART character device file is available as /dev/ttySKIQ_UART<card> where <card> is the Stretch’s card index. This
device file may be used directly in any application (whether it uses libsidekiq or not) to receive NMEA-0183 messages.
This device file may also be used in conjunction with gpsd and gpsmon.

Sidekiq Stretch GPS sysfs
Control and status monitoring of Sidekiq Stretch’s on-board GPS is provided through several sysfs entries on the
host system. When both the sidekiq_uart.ko kernel module and the dmadriver.ko (v5.3.0 or later) kernel module
are loaded, several sysfs entries are available in /sys/fs/skiq_gps/<card> where <card> is the Stretch’s card index.
These entries are accessible from any application, whether it uses libsidekiq or not. A short summary of the available
entries as of v0.0.2 of sidekiq_gps are as follows:

• ant_bias_en – enables (1) or disables (0) the antenna bias (see the Sidekiq Stretch Hardware User’s Manual
for more details)

• has_fix – GPS has a fix (1) or does not have a fix (0)

• power_en_n – enables (0) or disables (1) power to the GPS module

• reset – controls the RESET line to the GPS module - (1) holds the device in reset, while (0) allows it to run

6.2.4 Setting up Sidekiq onNewHost PC
The following is a brief overview of how to configure a new host PC with Sidekiq. For details on configuring a
Windows Host PC, refer to Windows Sidekiq Development (page 70).

LinuxHost PC Requirements
The following are requirements for the Host PC.

• Must be running Linux.

• Must use a 64-bit processor.

• Must be running supported kernel version (see below tables)

6.2. Developing for Alternative Host Platforms 83

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

– In CentOS 7.6, the 3.10.0-957 kernel series (base through 12.2 releases) have incorrectly marked a re-
quired kernel symbol related to DMA transactions as GPL. At this time, we are unable to provide kernel
modules for this kernel series as our DMA driver has a proprietary license. UPDATE: Starting with release
21.2, the 3.10.0-957 kernel series has fixed this issue. The EL Repo has fixed this issue starting with
release 5.1 in the 3.10.0-957 kernel series.

Table 6.3: Supported Ubuntu Kernels
Ubuntu (x86 64-bit)
Low Latency Kernels

• 4.4.0-116-lowlatency
• 5.3.0-45-lowlatency

Generic Kernels
• 4.4.0-21-generic through 4.4.0-210-generic
• 4.8.0-34-generic through 4.8.0-58-generic
• 4.10.0-14-generic through 4.10.0-42-generic
• 4.11.0-13-generic and 4.11.0-14-generic
• 4.12.0-13-generic
• 4.13.0-16-generic through 4.13.0-45-generic
• 4.15.0-13-generic through 4.15.0-208-generic
• 4.18.0-13-generic through 4.18.0-25-generic
• 5.0.0-15-generic through 5.0.0-63-generic
• 5.3.0-19-generic through 5.3.0-76-generic
• 5.4.0-26-generic through 5.4.0-146-generic
• 5.8.0-23-generic through 5.8.0-63-generic
• 5.11.0-16-generic through 5.11.0-18-generic
• 5.11.0-22-generic through 5.11.0-49-generic
• 5.13.0-21-generic through 5.13.0-52-generic
• 5.15.0-25-generic through 5.15.0-69-generic
• 5.19.0-28-generic through 5.19.0-41-generic
• 4.13.0-1031-oem
• 4.15.0-1043-oem
• 4.19.0-041900rc3-generic

Table 6.4: Supported CentOS 6.x Kernels
CentOS 6.x

• 2.6.32-279.el6.x86_64 series up to 22.1
• 2.6.32-358.el6.x86_64 series up to 23.2
• 2.6.32-431.el6.x86_64 series up to 29.2
• 2.6.32-504.el6.x86_64 series up to 30.3
• 2.6.32-573.el6.x86_64 series up to 26.1
• 2.6.32-642.el6.x86_64 series up to 15.1
• 2.6.32-696.el6.x86_64 series up to 30.1
• 2.6.32-754.el6.x86_64 series up to 33.1
• 3.10.83-1.el6.elrepo.x86_64
• 3.10.92-1.el6.elrepo.x86_64

6.2. Developing for Alternative Host Platforms 84

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 6.5: Supported CentOS 7.x Kernels
CentOS 7.x

• 3.10.0-123.el7.x86_64 series up to 20.1
• 3.10.0-229.el7.x86_64 series up to 20.1
• 3.10.0-327.el7.x86_64 series up to 36.3
• 3.10.0-514.el7.x86_64 series up to 26.2
• 3.10.0-693.el7.x86_64 series up to 21.1
• 3.10.0-862.el7.x86_64 series up to 14.4
• 3.10.0-957.el7.x86_64 series from 21.2 to 27.2
• 3.10.0-957.el7.centos.plus.x86_64 from 5.1 to 27.2
• 3.10.0-1062.el7.x86_64 series up to 18.1
• 3.10.0-1062.1.1.el7.centos.plus.x86_64 series up to 18.1
• 3.10.0-1127.el7.x86_64 series up to 19.1
• 3.10.0-1127.el7.centos.plus.x86_64 series up to 19.1
• 3.10.0-1160.el7.x86_64 series up to 42.2
• 3.10.0-1160.el7.centos.plus.x86_64 series up to 42.2
• 4.4.39-1.el7.elrepo.x86_64
• 4.4.139-1.el7.elrepo.x86_64
• 4.4.198-1.el7.elrepo.x86_64
• 4.16.9-1.el7.elrepo.x86_64
• 5.1.15-1.el7.elrepo.x86_64

Table 6.6: Supported CentOS 8.x Kernels
CentOS 8.x

• 4.18.0-80.el8.x86_64
• 4.18.0-80.1.2.el8_0.x86_64 series up to 11.2
• 4.18.0-147.el8.x86_64
• 4.18.0-147.0.3.el8_1.x86_64 series up to 8.1
• 4.18.0-147.3.1.el8_1.centos.plus.x86_64
• 4.18.0-147.5.1.el8_1.centos.plus.x86_64
• 4.18.0-193.el8.x86_64
• 4.18.0-193.1.2.el8_2.x86_64 series up to 19.1
• 4.18.0-193.6.3.el8_2.centos.plus.x86_64 series up to 19.1
• 4.18.0-240.el8.x86_64
• 4.18.0-240.1.1.el8_3.x86_64 series up to 22.1
• 4.18.0-240.1.1.el8_3.centos.plus.x86_64 series up to 22.1
• 4.18.0-305.3.1.el8.x86_64 series up to 19.1
• 4.18.0-305.3.1.el8.centos.plus.x86_64 series up to 19.1
• 4.18.0-305.25.1.el8_4.centos.plus.x86_64
• 4.18.0-348.el8.x86_64
• 4.18.0-348.2.1.el8_5.x86_64

6.2. Developing for Alternative Host Platforms 85

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 6.7: Supported Fedora and Debian Kernels
Fedora Debian

• 3.17.4-301.fc21.x86_64
• 4.13.12-200.fc26.x86_64
• 4.13.9-200.fc26.x86_64
• 4.13.9-300.fc27.x86_64
• 4.14.3-300.fc27.x86_64
• 4.14.5-300.fc27.x86_64
• 5.0.9-301.fc30.x86_64

• 3.16.0-4-amd64

Table 6.8: Supported NVIDIA Jetson TX1 / TX2 Kernels
NVIDIA Jetson TX1 NVIDIA Jetson TX2

• JetPack 3.1 (L4T R28.1)
• JetPack 3.2.1 (L4T R28.2)
• JetPack 3.3 (L4T R28.2)
• JetPack 4.4.1 (L4T R32.4.4)
• JetPack 4.5 (L4T R32.5)
• JetPack 4.5.1 (L4T R32.5.1)
• JetPack 4.6 (L4T R32.6.1)
• JetPack 4.6.1 (L4T R32.7.1)
• JetPack 4.6.2 (L4T R32.7.2)
• JetPack 4.6.3 (L4T R32.7.3)

• JetPack 3.1 (L4T R28.1)
• JetPack 3.2.1 (L4T R28.2.1)
• JetPack 3.3 (L4T R28.2.1)
• JetPack 4.2 (L4T R32.1)
• JetPack 4.2.1 (L4T R32.2)
• JetPack 4.2.2 (L4T R32.2.1)
• JetPack 4.2.3 (L4T R32.2.1)
• JetPack 4.3 (L4T R32.3.1)
• JetPack 4.4 (L4T R32.4.3)
• JetPack 4.4.1 (L4T R32.4.4)
• JetPack 4.5 (L4T R32.5)
• JetPack 4.5.1 (L4T R32.5.1)
• JetPack 4.6 (L4T R32.6.1)
• JetPack 4.6.1 (L4T R32.7.1)
• JetPack 4.6.2 (L4T R32.7.2)
• JetPack 4.6.3 (L4T R32.7.3)

6.2. Developing for Alternative Host Platforms 86

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 6.9: Supported NVIDIA Jetson Xavier/Orin Kernels
NVIDIA Jetson Xavier/Orin

• JetPack 4.1.1 (L4T R31.1)
• JetPack 4.2 (L4T R32.1)
• JetPack 4.2.1 (L4T R32.2)
• JetPack 4.2.2 (L4T R32.2.1)
• JetPack 4.2.3 (L4T R32.2.1)
• JetPack 4.3 (L4T R32.3.1)
• JetPack 4.4 (L4T R32.4.3)
• JetPack 4.4.1 (L4T R32.4.4)
• JetPack 4.5 (L4T R32.5)
• JetPack 4.5.1 (L4T R32.5.1)
• JetPack 4.6 (L4T R32.6.1)
• JetPack 4.6.1 (L4T R32.7.1)
• JetPack 4.6.2 (L4T R32.7.2)
• JetPack 4.6.3 (L4T R32.7.3)
• JetPack 5.0.0 (L4T R34.1.0)
• JetPack 5.0.1 (L4T R34.1.1)
• JetPack 5.0.2 (L4T R35.1.0)
• JetPack 5.1.0 (L4T R35.2.1)
• JetPack 5.1.1 (L4T R35.3.1)

Configuring ANewHost
1. Install Sidekiq card in new host PC

2. Download and install the latest Sidekiq update from Epiq Solutions support forum, [5] (page 8). Refer to
Installation Procedure (page 22) for details on what the update procedure installs.

3. Download and install ERA for Epiq Solutions support forum, [5] (page 8).

6.2.5 Developing for theMatchstiq S1x and S2x
The Matchstiq S1x and S2x platforms (see https://epiqsolutions.com/rf-transceiver/matchstiq-s/ for more details)
are small form factor software defined radio platforms that have internal Sidekiq card(s). This means libsidekiq is
used to develop custom applications for the Matchstiq S1x platform.

The Sidekiq SDK already supports the processor architecture of the Matchstiq S1x and S2x platforms, however a
cross-compiler is needed to support building custom applications. The toolchain may be downloaded from the Epiq
Solutions Support forum using the following link:

https://support.epiqsolutions.com/viewtopic.php?p=6395

The toolchain is offered in either a Debian or RPM format and is installed at a specific location on the development
machine and symlinked as expected by the Sidekiq SDK. The toolchain was created by OpenWRT’s ImageBuilder
framework.

To verify correct toolchain installation, navigate to the Sidekiq SDK directory and compile the test applications
specifying a BUILD_CONFIG of arm_cortex-a9.gcc5.2_glibc_openwrt. The applications may then be copied to the
Matchstiq S1x or S2x unit and executed (as shown in the next code block). Before executing applications on the
Matchstiq, it is imperative no other application is using the Sidekiq card.

First, copy the executable to the Matchstiq using the scp command.

6.2. Developing for Alternative Host Platforms 87

https://epiqsolutions.com/rf-transceiver/matchstiq-s/
https://support.epiqsolutions.com/viewtopic.php?p=6395

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

linux$ cd sidekiq_sdk_v4.17.x/test_apps

linux$ make BUILD_CONFIG=arm_cortex-a9.gcc5.2_glibc_openwrt

...
<build output truncated>
...

linux$ scp bin/version_test root@192.168.2.140:/tmp/

Then, shell into the Matchstiq and execute the application.

linux$ ssh root@192.168.2.140
root@OpenWrt-sn760B:~# /tmp/version_test
1 card(s) found: 0 in use, 1 available!
Card IDs currently used :
Card IDs currently available: 0
Info: initializing 1 card(s)...
SKIQ[20100]: <INFO> libsidekiq v4.17.x (gd0f29444f)
version_test[20100]: <INFO> Sidekiq card 0 is serial number=45822, hardware MPCIE C (rev C), product␣
→˓SKIQ-MPCIE-002 (PCIe) (part ES004206-C0-00)
version_test[20100]: <INFO> Sidekiq card 0 firmware v2.9
version_test[20100]: <INFO> Sidekiq card 0 FPGA v3.13.1, (date 20060518, FIFO size 16k)
version_test[20100]: <INFO> Sidekiq card 0 is configured for an internal reference clock
version_test[20100]: <INFO> Loading calibration data for Sidekiq PCIe, card 0

* libsidekiq v4.17.x

* Sidekiq Card 0

Card
accelerometer present: true
part type: PCIe
part info: ES004206-C0-00
serial: 45822
xport: PCIe
GPSDO: not supported by card

FPGA
version: 3.13.1
git hash: 0x0a4725c4
build date (yymmddhh): 20060518
tx fifo size: 16k samples

FW
version: 2.9

RF
reference clock: internal
reference clock frequency: 40000000 Hz

version_test[20100]: <INFO> Unlocking card 0

6.2.6 Developing for the NVIDIA Jetson TX1/TX2/Xavier
The Sidekiq SDK already supports the processor architecture of the NVIDIA Jetson, however a cross-compiler is
needed to support building custom applications. The toolchain may be downloaded from Linaro using the following

6.2. Developing for Alternative Host Platforms 88

mailto:root@192.168.2.140
mailto:root@192.168.2.140
mailto:root@OpenWrt-sn760B

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

link:

https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-linux-gnu/

To verify correct toolchain installation, navigate to the Sidekiq SDK directory and compile the test applications
specifying a BUILD_CONFIG of aarch64.gcc6.3. The applications may then be copied to the NVIDIA Jetson unit and
executed.

Note: On the NVIDIA Jetson TX1 / TX2 platform, FPGA programming or kernel module reloading causes a kernel
panic after PCI coherent memory is exhausted. In its default configuration, it may happen in as few as two times.
Refer to this post (https://devtalk.nvidia.com/default/topic/1023501/pci_alloc_consistent-memory-leak-on-tx2-/)
for details on how to patch the Jetson’s TX2 kernel.

6.2.7 Developing for the Sidekiq Z2
The Sidekiq Z2 platform (see https://epiqsolutions.com/rf-transceiver/sidekiq-z2/ for more details) is a small form
factor Linux system (including ARM CPU and Xilinx FPGA using the Zynq) and software defined radio platform that
utilizes libsidekiq for SDR functionality. This means libsidekiq is used to develop custom applications for the Sidekiq
Z2 platform.

The Sidekiq SDK already supports the processor architecture of the Sidekiq Z2, however a cross-compiler is needed
to support building custom applications. The Z2 is loaded with a Board Support Package (BSP); depending on which
version of the Z2 BSP is targeted, a different cross-compiler and toolchain are required. Please note that as of version
3.0.0 of the Z2 BSP, the cross-compiler has changed and applications compiled for the 2.0.0 BSP will not work on
the 3.0.0 BSP (and vice-versa). Both toolchains may be downloaded from the Epiq Solutions Support forum:

Z2 BSP v2.0 and below https://support.epiqsolutions.com/viewtopic.php?f=148&t=2455
Z2 BSP v3.0 and above https://support.epiqsolutions.com/viewtopic.php?f=148&t=3189

The toolchains are offered in either a Debian or RPM format and are installed at a specific location on the devel-
opment machine and symlinked as expected by the Sidekiq SDK. These toolchain were downloaded from the Xilinx
SDK and packaged by Epiq for distribution.

To verify correct toolchain installation, navigate to the Sidekiq SDK directory and compile the test applications
specifying a BUILD_CONFIG of arm_cortex-a9.gcc4.9.2_gnueabi (for v2.0.0 or below of the BSP) or arm_cortex-a9.
gcc7.2.1_gnueabihf (for v3.0.0 and above of the BSP). The applications may then be copied to the Sidekiq Z2 unit
and executed (as shown in the next code block). Before executing applications on the Sidekiq Z2, it is imperative no
other application is using the Sidekiq card.

First, copy the executable to the Sidekiq Z2 using scp.

linux$ cd sidekiq_sdk_v4.17.x/test_apps
linux$ make BUILD_CONFIG=arm_cortex-a9.gcc7.2.1_gnueabihf
...
<build output truncated>
...
linux$ scp bin/version_test root@192.168.3.1:/tmp/

Then, shell into the Sidekiq Z2 and execute the application.

linux$ ssh root@192.168.3.1

root@sidekiqz2:~# /tmp/version_test
SKIQ[1163]: <INFO> Need to perform full initialization
SKIQ[1163]: <INFO> Performing detection of cards

6.2. Developing for Alternative Host Platforms 89

https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-linux-gnu/
https://devtalk.nvidia.com/default/topic/1023501/pci_alloc_consistent-memory-leak-on-tx2-/
https://epiqsolutions.com/rf-transceiver/sidekiq-z2/
https://support.epiqsolutions.com/viewtopic.php?f=148&t=2455
https://support.epiqsolutions.com/viewtopic.php?f=148&t=3189
mailto:root@192.168.3.1
mailto:root@192.168.3.1
mailto:root@sidekiqz2

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

SKIQ[1163]: <INFO> Sidekiq card detection completed successfully!
SKIQ[1163]: <INFO> Preliminary initialization complete, continue full initialization
1 card(s) found: 0 in use, 1 available!
Card IDs currently used :
Card IDs currently available: 0
Info: initializing 1 card(s)...
SKIQ[1163]: <INFO> libsidekiq v4.17.x (gddb0a7bf7)
version_test[1163]: <INFO> Sidekiq card 0 is serial number=8028, Z2 (rev B) (part ES023201-B0-00)
version_test[1163]: <WARNING> FPGA capabilities indicate no support for reading/writing flash for␣
→˓card 0
version_test[1163]: <INFO> Sidekiq card 0 FPGA v3.14.1, (date 21042019, FIFO size unknown)
version_test[1163]: <INFO> Sidekiq card 0 is configured for an internal reference clock
version_test[1163]: <INFO> Loading calibration data for Sidekiq Z2, card 0

* libsidekiq v4.17.x

* Sidekiq Card 0

Card
accelerometer present: false
part type: Z2
part info: ES023201-B0-00
serial: 8028
xport: custom
GPSDO: not supported by card

FPGA
version: 3.14.1
git hash: 0x0cb0dec6
build date (yymmddhh): 21042019
tx fifo size: unknown

RF
reference clock: internal
reference clock frequency: 40000000 Hz

version_test[1163]: <INFO> Unlocking card 0

6.2.8 Developing for theMatchstiq Z3u
The Matchstiq Z3u platform (see https://epiqsolutions.com/rf-transceiver/matchstiq-z for more details) is a small
form factor software defined radio platform that has a wideband transceiver supported via libsidekiq. This means
libsidekiq is used to develop custom applications for the Matchstiq Z3u platform.

The Sidekiq SDK already supports the processor architecture of the Matchstiq Z3u platforms, however a cross-
compiler is needed to support building custom applications. A minimum of Sidekiq SDK v4.15.0 is required for
any Matchstiq Z3u development. The toolchain may be downloaded from Linaro using the following link:

https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-linux-gnu/

To verify correct toolchain installation, navigate to the Sidekiq SDK directory and compile the test applications
specifying a BUILD_CONFIG of aarch64.gcc6.3. The applications may then be copied to the Matchstiq Z3u unit and
executed.

First, copy the executable from the host to the Matchstiq Z3u using scp.

host$ cd sidekiq_sdk_v4.17.x/test_apps
host$ make BUILD_CONFIG=aarch64.gcc6.3

6.2. Developing for Alternative Host Platforms 90

https://epiqsolutions.com/rf-transceiver/matchstiq-z
https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-linux-gnu/

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

...
<build output truncated>
...
host$ scp bin/version_test sidekiq@192.168.0.15:/tmp/

Then, shell into the Sidekiq Z3u and execute the application.

host$ ssh sidekiq@192.168.0.15

sidekiq@z3u:~$ /tmp/version_test
1 card(s) found: 0 in use, 1 available!
Card IDs currently used :
Card IDs currently available: 0
Info: initializing 1 card(s)...
SKIQ[3396]: <INFO> libsidekiq v4.15.0
version_test[3396]: <INFO> Sidekiq card 0 is serial number=9X0J, Z3U (rev B) (part ES032201-B0-00)
version_test[3396]: <WARNING> FPGA capabilities indicate no support for reading/writing flash for␣
→˓card 0
version_test[3396]: <INFO> Sidekiq card 0 FPGA v3.14.0, (date 20081217, FIFO size unknown)
version_test[3396]: <INFO> Sidekiq card 0 is configured for an internal reference clock
version_test[3396]: <INFO> Loading calibration data for Sidekiq Z3U, card 0

* libsidekiq v4.15.0

* Sidekiq Card 0

Card
accelerometer present: true
part type: Z3U
part info: ES032201-B0-00
serial: 9X0J
xport: custom

FPGA
version: 3.14.0
git hash: 0x1eefb308
build date (yymmddhh): 20081217
tx fifo size: unknown

RF
reference clock: internal
reference clock frequency: 40000000 Hz

version_test[3396]: <INFO> Unlocking card 0

6.3 Assessing Throughput Performance
Since the Sidekiq card can be used in a wide variety of host systems, the throughput capabilities of the Sidekiq
varies greatly. Included with the prebuilt Sidekiq test applications are a set of benchmarking test applications.
These benchmarking applications can be used to determine the theoretical maximum throughput performance of a
particular host system. Additionally, various Sidekiq parameters can be adjusted to observe impact in performance.

6.3. Assessing Throughput Performance 91

mailto:sidekiq@192.168.0.15
mailto:sidekiq@192.168.0.15
mailto:sidekiq@z3u

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

6.3.1 Receive Performance
The rx_benchmark application provides insight into a receive-only application’s maximum theoretical benchmark on
a specific host system. The user can specify the number of handles specified to use and whether the blocking receive
capability is used. The application then monitors timestamp errors for each enabled channel to validate receive
throughput performance.

If a desired run time or minimum error count is desired, the --threshold and --time parameters can be used for the
application. If the threshold criteria was met, a 0 is returned by the application.

6.3.2 Receive Performance Example
Here is an example of running the benchmark application with both RX A1 and A2 enabled at a rate of 20Msps for 5
seconds. The return code of 0 indicates that the threshold criteria was met.

$./rx_benchmark --card 0 --handle both --rate 20000000 --threshold 1 --time 5
rx_benchmark[27478]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
rx_benchmark[27478]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
rx_benchmark[27478]: <INFO> Sidekiq card 0 is configured for an internal reference clock
rx_benchmark[27478]: <INFO> Sidekiq card 0 firmware v2.2
rx_benchmark[27478]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
rx_benchmark[27478]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Receive throughput: 148 MB/s (# RxA1 timestamp errors 0) (# RxA2 timestamp errors 0)
Receive throughput: 153 MB/s (# RxA1 timestamp errors 0) (# RxA2 timestamp errors 0)
Receive throughput: 153 MB/s (# RxA1 timestamp errors 0) (# RxA2 timestamp errors 0)
Receive throughput: 153 MB/s (# RxA1 timestamp errors 0) (# RxA2 timestamp errors 0)
Receive throughput: 153 MB/s (# RxA1 timestamp errors 0) (# RxA2 timestamp errors 0)
rx_benchmark[27478]: <INFO> unlocking card 0
$ echo $?
0

Here is an example of running the benchmark application with both RX A1 and A2 enabled at a rate of 30Msps for 5
seconds. The return code of 1 indicates that the threshold criteria was not met.

$./rx_benchmark --card 0 --handle both --rate 30000000 --threshold 1 --time 5
rx_benchmark[27504]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
rx_benchmark[27504]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
rx_benchmark[27504]: <INFO> Sidekiq card 0 is configured for an internal reference clock
rx_benchmark[27504]: <INFO> Sidekiq card 0 firmware v2.2
rx_benchmark[27504]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
rx_benchmark[27504]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Receive throughput: 191 MB/s (# RxA1 timestamp errors 4898) (# RxA2 timestamp errors 4902)
Receive throughput: 198 MB/s (# RxA1 timestamp errors 9968) (# RxA2 timestamp errors 9981)
Receive throughput: 198 MB/s (# RxA1 timestamp errors 15041) (# RxA2 timestamp errors 15063)
Receive throughput: 198 MB/s (# RxA1 timestamp errors 20107) (# RxA2 timestamp errors 20148)
Receive throughput: 198 MB/s (# RxA1 timestamp errors 25176) (# RxA2 timestamp errors 25228)
rx_benchmark[27504]: <INFO> unlocking card 0
$ echo $?
1

6.3.3 Transmit Performance
The tx_benchmark application provides insight into a transmit-only application’s maximum theoretical benchmark
on a specific host system. The user can specify the number of threads to use (1 implies synchronous transmit mode,

6.3. Assessing Throughput Performance 92

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

more than 1 selects asynchronous transmit mode) and the block size. This allows for a user to evaluate how different
transmit configuration options impact the overall transmit throughput on a system.

If a desired run time or minimum error count is desired, the --threshold and --time parameters can be used for the
application. If the threshold criteria was met, a 0 is returned by the application.

Transmit Performance Example
Here is an example of running the tx_benchmark application in asynchronous transmit mode with 4 threads, a block
size of 16380, and at a rate of 45Msps for 5 seconds. The return code of 0 indicates that the threshold criteria was
met.

$./tx_benchmark --block-size 16380 --threshold 5 --time 5 --threads 4 --rate 45000000
Info: number of samples is 16380 (65536 bytes)
tx_benchmark[27680]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
tx_benchmark[27680]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
tx_benchmark[27680]: <INFO> Sidekiq card 0 is configured for an internal reference clock
tx_benchmark[27680]: <INFO> Sidekiq card 0 firmware v2.2
tx_benchmark[27680]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
tx_benchmark[27680]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Setting sample rate to 45000000
Send throughput: 175 MB/s (# underruns 1)
Send throughput: 171 MB/s (# underruns 1)
Send throughput: 171 MB/s (# underruns 1)
Send throughput: 171 MB/s (# underruns 1)
Send throughput: 171 MB/s (# underruns 1)
Sending complete
Cleaning up
tx_benchmark[27680]: <INFO> unlocking card 0
$ echo $?
0

Here is an example of running the tx_benchmark application in synchronous transmit mode with 4 threads, a block
size of 16380, and at a rate of 45Msps for 5 seconds. The return code of 1 indicates that the threshold criteria was
not met.

$./tx_benchmark --block-size 16380 --threshold 5 --time 5 --threads 1 --rate 45000000
Info: number of samples is 16380 (65536 bytes)
tx_benchmark[27690]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
tx_benchmark[27690]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
tx_benchmark[27690]: <INFO> Sidekiq card 0 is configured for an internal reference clock
tx_benchmark[27690]: <INFO> Sidekiq card 0 firmware v2.2
tx_benchmark[27690]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
tx_benchmark[27690]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Setting sample rate to 45000000
Send throughput: 159 MB/s (# underruns 5140)
Send throughput: 152 MB/s (# underruns 11176)
Send throughput: 154 MB/s (# underruns 16406)
Send throughput: 155 MB/s (# underruns 21748)
Send throughput: 155 MB/s (# underruns 27068)
Sending complete
Cleaning up
tx_benchmark[27690]: <INFO> unlocking card 0
$ echo $?
1

6.3. Assessing Throughput Performance 93

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

6.3.4 Transceive
The xcv_benchmark application provides insight into a transceiver application’s maximum theoretical benchmark on
a specific host system. The user can specify the number of threads to use for transmission (1 implies synchronous
transmit mode, more than 1 selects asynchronous transmit mode), the transmit block size, and whether to receive
samples with the blocking mode. This allows for a user to evaluate how different streaming configuration options
impact the overall throughput on a specific host system. Both transmit underruns as well as receive timestamp errors
are monitored to determine the performance of the system.

If a desired run time or minimum error count is desired, the --threshold and --time parameters can be used for the
application. If the threshold criteria was met, a 0 is returned by the application.

Transceive Performance Example
Here is an example of running the benchmark application in asynchronous transmit mode with 4 TX threads, a TX
block size of 16380, using the blocking receive mode, and at a rate of 30Msps for 5 seconds. The return code of 0
indicates that the threshold criteria was met.

$./xcv_benchmark --threads 4 --block-size 16380 --blocking --rate 30000000 --time 5 --threshold 5
xcv_benchmark[28256]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
xcv_benchmark[28256]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
xcv_benchmark[28256]: <INFO> Sidekiq card 0 is configured for an internal reference clock
xcv_benchmark[28256]: <INFO> Sidekiq card 0 firmware v2.2
xcv_benchmark[28256]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
xcv_benchmark[28256]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Send throughput: 117 MB/s (# underruns 3)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 3)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 3)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 3)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 3)
Receive throughput: 115 MB/s (# timestamp errors 0)
Waiting for packets to complete transfer, num_pkts 9210, num_complete 9160
Packet send completed!
xcv_benchmark[28256]: <INFO> unlocking card 0
$ echo $?
0

Here is an example of running the benchmark application in asynchronous transmit mode with 1 TX thread (syn-
chronous mode), a TX block size of 16380, using the blocking receive mode, and at a rate of 30Msps for 5 seconds.
The return code of 1 indicates that the threshold criteria was not met.

$./xcv_benchmark --threads 1 --block-size 16380 --blocking --rate 30000000 --time 5 --threshold 5
xcv_benchmark[28267]: <INFO> libsidekiq v4.0.0, RF IC library 2.5.2
xcv_benchmark[28267]: <INFO> Sidekiq card 0 is serial number=30281, hardware MPCIE C, product SKIQ-MPCIE-001
xcv_benchmark[28267]: <INFO> Sidekiq card 0 is configured for an internal reference clock
xcv_benchmark[28267]: <INFO> Sidekiq card 0 firmware v2.2
xcv_benchmark[28267]: <INFO> Sidekiq card 0 FPGA v3.3, (date 16122919, FIFO size 3)
xcv_benchmark[28267]: <INFO> card 0: number of tx channels supported 1, number of rx channels supported 2
Send throughput: 114 MB/s (# underruns 191)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 472)
Receive throughput: 115 MB/s (# timestamp errors 0)

(continues on next page)

6.3. Assessing Throughput Performance 94

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

Send throughput: 114 MB/s (# underruns 1048)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 1056)
Receive throughput: 115 MB/s (# timestamp errors 0)
Send throughput: 114 MB/s (# underruns 1534)
Receive throughput: 115 MB/s (# timestamp errors 0)
Packet send completed!
xcv_benchmark[28267]: <INFO> unlocking card 0
$ echo $?
1

6.4 DKMS
6.4.1 What is DKMS?
In general, Linux drivers (kernel modules) need to be compiled to run with a specific version of the Linux kernel.
While many Linux distributions ship updated drivers alongside new versions of the kernel, any third-party or user-
added modules are not recompiled by default. Upon rebooting the system to use the new kernel version, these
modules can not load due to a version mismatch and require manual installation. As this can be annoying and time
consuming, the Dynamic Kernel Module Support (DKMS) framework was developed by the Linux community.

DKMS is a tool for Linux-based systems that allows kernel modules to be automatically recompiled upon the instal-
lation of a new kernel version. This helps to ensure that the kernel modules are always available for the running
kernel without needing to download them or request a new version from the vendor.

6.4.2 What systems does DKMSwork on?
While DKMS works on most major Linux distributions, most do not include it in a default installation and require the
installation of extra software packages. For example, Ubuntu requires the installation of the dkms package from the
official repositories while CentOS requires the addition of the third-party EPEL repository before installing the dkms
package.

6.4.3 How is Epiq using DKMS?
Sidekiq software defined radios use several kernel modules to communicate between the host and the radio card.

In the past, Sidekiq software installs have included pre-compiled versions of the kernel modules for a list of specific
kernel versions - usually the latest kernel versions of the long-term support branches of popular Linux distributions.
While this is adequate at time of a libsidekiq release, most Linux distributions frequently release newer kernel version
requiring Epiq to supply updated drivers upon request (on our support forums, https://support.epiqsolutions.com).

As of libsidekiq v4.15.0, all of the Epiq kernel modules provide optional DKMS support. Precompiled kernel modules
will continue to be bundled with libsidekiq releases, and Epiq will certainly supply updated modules upon request.
Customers may also install the DKMS packaged versions of these modules to ensure that appropriate kernel modules
are always used without the need for manual recompilation.

6.4.4 Are there any licensing requirements for using DKMS support?
Several of Epiq’s kernel modules are licensed under the GPL and source code and DKMS support are freely provided.
These modules include:

6.4. DKMS 95

https://support.epiqsolutions.com

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

• pci_manager

• sidekiq_uart

• sidekiq_gps

Some of Epiq’s kernel modules contain proprietary and/or sublicensed code. These modules include:

• dmadriver

• skiq_platform_driver

As DKMS modules recompile as needed, they require the source code of the module to be bundled in the DKMS
package. Therefore, as of libsidekiq v4.15.0, DKMS support for these modules requires the purchase of a sublicense
for the DMA Driver source code. Please contact the Epiq sales department (sales@epiqsolutions.com) or your account
executive for more information on sublicensing.

6.4.5 How are the Epiq DKMSmodules installed?
With the exception of DKMS modules requiring a license, all other DKMS modules are included in the default lib-
sidekiq install (v4.15.0 and higher). As these are optional components, they must be manually installed and enabled
to take advantage of them.

Please note that not all Linux distributions come with the DKMS subsystem installed by default; please check your
distribution’s documentation for more information on DKMS and installation / configuration.

The DKMS packages reside in the drivers/dkms of the libsidekiq install (typically ~/sidekiq_image_current/). Each
DKMS module has its own package, and all DKMS packages should be installed to ensure that all of the modules are
kept up-to-date. There are several ways to install the DKMS modules:

• Automatically install all of the appropriate packages:

– Run the install-dkms-packages.sh script, which installs the proper packages for the currently running
Linux Distribution

• Manually install packages appropriate for OS through its package manager:

– Each module has its own package file

* deb/*.deb for Ubuntu & Debian-based systems

* rpm/*.rpm for CentOS / Fedora / RHEL-based systems

– Packages can be installed from the command line (dpkg or yum, depending on Linux distribution) or
through the GUI

• Manually install packages through the source packages:

– Uncompress the driver source package using the tar and/or xz command(s)

* Source packages may be found in the source/ directory

– Run the install-dkms.sh script found inside the uncompressed directory (will likely need to run as root
user or via sudo)

In order to upgrade the DKMS modules - for example, when a new version of libsidekiq comes out - please follow the
above steps for installing the DKMS module. If source packages were originally used to install the DKMS modules,
please remove them (see directions below) before installing the new versions.

Installation of the sublicensed DMA Driver DKMS module should use the same instructions as either of the manual
steps the above; please note that this module bundles both the dma_driver and skiq_platform_device into one
package.

6.4. DKMS 96

mailto:sales@epiqsolutions.com

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

6.4.6 How to check the status of the Epiq DKMSmodules?
From the command line, run the command dkms status. Depending on which module(s) were installed, one or
more of the following should be listed:

• sidekiq_gps

• sidekiq_uart

• pci_manager

• dmadriver

• skiq_platform_device

This command verifies that the listed DKMS modules are installed and enabled, and lists the current source version
and the kernel version(s) that the modules were automatically built for.

6.4.7 How are the Epiq DKMSmodules removed?
If the OS packages were installed (e.g. through the .deb or .rpm installation steps listed above), then remove the
packages through the OS’s package manager. This can typically be done through the GUI or on the command line
(typically apt or yum).

If the installation was done through the source packages, run the remove-dkms.sh scripts found in each of the
compressed source packages (will likely need to run as root user or via sudo).

6.4.8 How are the Epiq DKMSmodules loaded?
By default, the libsidekiq installation automatically attempts to load the needed kernel modules on system startup
using the load_sidekiq_drivers.sh script (found in the drivers/ directory of the libsidekiq install). With the
addition of DKMS support, if one of the pre-built kernel modules cannot be found for the currently running kernel,
the system will attempt to load the DKMS-based modules (if installed).

6.5 Advanced Topics
6.5.1 Adjusting the DMARing Buffer Packet Count (Linux only)
Sidekiq radios that use the PCI / Thunderbolt bus as a transport interact with the kernel running on the host system
through the DMA Driver kernel module. This kernel module handles the memory transfer of I/Q samples from the
radio directly into the host’s memory using Direct Memory Access (DMA); the kernel module preallocates a chunk of
host memory and organizes it into a ring buffer, each element of which contains a “packet” of I/Q sample data from
the radio.

By default, the number of I/Q sample data packets is set to:

• 1024 for Matchstiq S1x / S2x radios

• 2048 for all other PCI / Thunderbolt based radios

(Please note that Sidekiq Z2 and Matchstiq Z3u do not use the DMA Driver kernel module)

Each ring buffer entry is 4096 bytes, so this effectively means that the DMA Driver on a host using 2048 ring buffer
packets has 8MB of I/Q sample buffer space before the sample buffer runs out of space and overflows (leading to
the skiq_rx_status_error_overrun condition when calling skiq_receive()). If the specified receive sample rate is
fairly low and the application using the Sidekiq reads samples frequently enough, this may be a reasonable amount of

6.5. Advanced Topics 97

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

buffer space. However, higher sample rate applications may require more available buffer space in order to capture
samples without frequent overruns. For example, with a 100Msps sample rate the default 8MB ring buffer can hold
roughly 20 ms worth of I/Q sample data; the user application must consistently read samples from the radio at a
faster rate than this to ensure that there are no overruns in the sample buffer.

One option to help prevent overruns is to increase the sample buffer size, which can be done by increasing the number
of entries in the DMA ring buffer; this can be done by specifying the RingBufferPacketCount module parameter when
loading the DMA Driver module. Using the modinfo command, here is an example of the module parameters of the
DMA Driver on an x86 host:

username@host:~/sidekiq_image_current/driver/5.4.0-39-generic$ modinfo dmadriver.ko
filename: /home/username/sidekiq_image_current/driver/5.4.0-39-generic/dmadriver.ko
version: 5.4.1.0
description: Northwest Logic PCI Express DMA Driver
license: Proprietary
author: Pro Code Works, LLC
srcversion: AE21B1718769B0830391B7C
alias: pci:v000019AAd00002280sv*sd*bc*sc*i*
alias: pci:v000019AAd00005832sv*sd*bc*sc*i*
alias: pci:v000019AAd00007021sv*sd*bc*sc*i*
alias: pci:v000019AAd00007011sv*sd*bc*sc*i*
alias: pci:v000019AAd0000E004sv*sd*bc*sc*i*
depends: skiq_platform_device
retpoline: Y
name: dmadriver
vermagic: 5.4.0-39-generic SMP mod_unload
parm: UseMSI:Use MSI [1 = TRUE|0 = FALSE] (default 1) (int)
parm: UseMSIX:Use MSIX [1 = TRUE|0 = FALSE] (default 0) (int)
parm: UseMSIMulti:Use MSI Multi-Vector [1 = TRUE|0 = FALSE] (default 1) (int)
parm: UseIntCtrl:Use Interrupt Control [1 = TRUE|0 = FALSE] (default 1) (int)
parm: DMADescriptorsPerEngine:Number of DMA Descriptors per Engine (int)
parm: RingBufferPacketCount:Number of packets in the ring buffer (default 2048)

(Note that the RingBufferPacketCount parameter displays the default number of ring buffer entries selected for the
host.)

In order to increase the number of ring buffer entries, this number can be increased. For example:

username@host:~/$ sudo insmod $HOME/sidekiq_image_current/driver/$(uname -r)/dmadriver.ko␣
→˓RingBufferPacketCount=16384

Setting RingBufferPacketCount=16384 increases the sample buffer size by eight times over the default settings (to
64MB) and provides approximately 160 ms of I/Q sample buffer space (given the 100Msps example given above).
However, this also dramatically increases the amount of dedicated kernel memory needed on the host system (as DMA
operations happen in kernel space), which may not be available on certain hosts. If the RingBufferPacketCount value
is set too high, the desired amount of buffer space may not be able to be allocated which can result in the module
loading but failing to allocate the requested amount of memory. This error will show up in the system logs:

[735.453649] DMAD: NorthWest Logic PCI Express DMA Driver 5.4.2.0
[735.453650] DMAD: Build (Sep 30 2020-21:54:17)
[735.453650] DMAD: Message logging enabled.
[735.453675] DMAD: Config: Setting ring buffer packet count to 128000
[735.453676] DMAD: Warning: DMADescriptorsPerEngine value (8192) too low for ring buffer packet count;␣
→˓expanding to 512000
[735.456140] DMAD: Config: Device name is DMAD0
[735.456170] DMAD 0000:02:00.0: enabling device (0000 -> 0002)
[735.458788] DMAD: Config: Bar 0, pMemRangePhys=0xdf010000, BarCfg=0xdf010000
[735.458789] DMAD: Config: BAR[0] Set to Register Type at Addr 0x000000000dd1c813

(continues on next page)

6.5. Advanced Topics 98

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

[735.458790] DMAD: Config: BAR[0] Register 32-bit PhysAddr=0xDF010000 VirtAddr=000000000dd1c813 Len=0x10000
[735.458791] DMAD: Config: Bar 1, pMemRangePhys=0xdf002000, BarCfg=0xdf002000
[735.458791] DMAD: Config: BAR[1] Set to Mem Type
[735.458792] DMAD: Config: BAR[1] Memory 32-bit PhysAddr=0xDF002000 VirtAddr=00000000a2c89dac Len=0x2000
[735.458793] DMAD: Config: Bar 2, pMemRangePhys=0xdf000000, BarCfg=0xdf000000
[735.458793] DMAD: Config: BAR[2] Set to Mem Type
[735.458794] DMAD: Config: BAR[2] Memory 32-bit PhysAddr=0xDF000000 VirtAddr=000000000b4b9284 Len=0x2000
[735.458803] DMAD: Config: Found a Packet Send Type DMA Engine
[735.458803] DMAD: Config: Allocating 512000 descriptors sizeof 32
[735.458865] DMAD: ERROR: Unable to allocate 16384000 DMA descriptors for DMA channel 0
[735.458865] DMAD: ERROR: DMA initialization for adapter 0 failed, cannot use device
[735.458940] DMAD: ERROR: Unable to attach to adapter

If this error occurs, it is likely that the PCI transport will be inaccessible and the Sidekiq card will fail to be detected
over PCI (on Sidekiq mPCIe and m.2 cards, the USB transport will still continue to function). However, as the DMA
Driver is a separate component, no warning about this condition will be shown from libsidekiq; therefore, when
experimenting with this parameter, it is important to verify through the system logs that the DMA Driver module
loaded without errors. When this error occurs, It is recommended to unload the driver (via the rmmod dmadriver)
command and attempt to reload it using a smaller value for RingBufferPacketCount.

Be aware that the following message in the system logs is not fatal, but it does indicate that
the DMADescriptorsPerEngine parameter is being automatically adjusted to accommodate the specified
RingBufferPacketCount parameter:

username@host:~/$ dmesg
...
[1307015.430356] DMAD: Config: Setting ring buffer packet count to 8192
[1307015.430356] DMAD: Warning: DMADescriptorsPerEngine value (8192) too low for ring buffer packet count;␣
→˓expanding to 32768

As this is an advanced configuration setting, as of libsidekiq v4.15.0 there is no default way to adjust the number of
ring buffer entries when the DMA Driver is loaded on system startup. One option is to unload and reload the DMA
Driver kernel module with the desired ring buffer size after system startup. Another option would be to modify the .
../sidekiq_image_current/driver/load_sidekiq_driver.sh file to include the RingBufferPacketCount parameter
when loading the DMA Driver (it is highly recommended to make a backup copy of this script before editing it).

6.5.2 Configuring Sidekiq Drivers Using a Driver Configuration File
As of the libsidekiq v4.17.2 System Release, driver parameters can be automatically set using a per-module configu-
ration file1. The modinfo -F parm <module_name> command lists modifiable parameters which can be loaded from a
configuration file. The man page for modinfo can be used for more info. The name of the configuration file should
match that of the module being configured; for instance, configuration options for the ‘dmadriver’ module should be
placed into ‘dmadriver.conf’. The configuration file needs to be saved in the .../sidekiq_image_current/driver/
driver_config folder. Two examples of configuring module parameters can be found within the preinstalled example
configuration file (.../sidekiq_image_current/driver/driver_config/sidekiq_drivers.conf.example):

x86 device driver example configuration
options dmadriver DMADescriptorsPerEngine=8192
options dmadriver RingBufferPacketCount=2048

ARM device driver example configuration
options dmadriver DMADescriptorsPerEngine=4096
options dmadriver RingBufferPacketCount=1024

1 This functionality is not available on Matchstiq S1x and S2x products.

6.5. Advanced Topics 99

Epiq Solutions Proprietary

7 Hardware Information

7.1 Detailed RF Port Configuration
The tables below provides a summary of RF ports and configurations available per Sidekiq product, revision and RF
mode. For details on configuring the RF port and mode, refer to RF Port Configuration (page 34).

Table 7.1: RF Port Mode
Product Supports Fixed? Supports TRX?
Sidekiq mPCIe Yes No
Sidekiq M.2 rev B Yes No
Sidekiq M.2 rev B TDD No Yes
Sidekiq M.2 rev C Yes Yes
Sidekiq X2 Yes No
Sidekiq Z2 Yes Yes
Sidekiq X4 Yes No
Matchstiq Z3u Yes Yes
Sidekiq NV100 Yes Yes

Table 7.2: RF Port Mapping for Sidekiq mPCIe, M.2, and Stretch

Sidekiq
mPCIe

SidekiqM.2
rev B

SidekiqM.2
rev B TDD

SidekiqM.2
rev C

Sidekiq
Stretch

skiq_rx_hdl_A1 Jxxx_RX1 J2 J2* J2 J2 or J1*

skiq_rx_hdl_A2 Jxxx_TX1RX2 J3 J3* J3 N/A
skiq_tx_hdl_A1 Jxxx_TX1RX2 J1 J2* J1 or J2* J1
skiq_tx_hdl_A2 N/A J4 J3* J4 or J3* N/A

* - requires the RF port to be configured to TRX via skiq_write_rf_port_config(). RX or TX is controlled via
skiq_write_rf_port_operation().

100

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Table 7.3: RF Port Mapping for Sidekiq X2 and X4
Sidekiq X2 Sidekiq X4

skiq_rx_hdl_A1 J2 J2
skiq_rx_hdl_A2 J1 J3
skiq_rx_hdl_B1 J3 J6
skiq_rx_hdl_B2 N/A J7
skiq_rx_hdl_C1 N/A J3
skiq_rx_hdl_D1 N/A J7
skiq_tx_hdl_A1 J4 J4
skiq_tx_hdl_A2 J5 J1
skiq_tx_hdl_B1 N/A J8
skiq_tx_hdl_B2 N/A J5

Table 7.4: RF Port Mapping for Sidekiq Z2 and Matchstiq Z3u
Sidekiq Z2 Matchstiq Z3u

skiq_rx_hdl_A1 J1 or J2 or J3** J1 or J2***

skiq_rx_hdl_A2 N/A J2
skiq_tx_hdl_A1 J1 J2
skiq_tx_hdl_A2 N/A N/A

** - requires the RF port to be configured to TRX via skiq_write_rf_port_config(). RX or TX is controlled via
skiq_write_rf_port_operation().
*** - J2 when in TRx mode, J1 when in fixed mode, mode configured with skiq_write_rf_port_config()

Table 7.5: RF Port Mapping for Sidekiq NV100
Sidekiq NV100

skiq_rx_hdl_A1 J1
skiq_rx_hdl_A2 J2 or J1*

skiq_rx_hdl_B1 J2 or J1*

skiq_tx_hdl_A1 J1
skiq_tx_hdl_B1 J2

* - RxB1 may be routed to J1, but only when operating in fixed mode (i.e. not TRX)

7.1. Detailed RF Port Configuration 101

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

7.2 FPGAProgramming
7.2.1 Transport Layer Requirements
In order to make use of a given Sidekiq, it is imperative to have the FPGA configured with the correct transport
implementation. For example, an application that is designed to use the PCIe transport interface requires the FPGA
to be loaded with an image implementing the PCIe components necessary for I/Q streaming. By default, a Sidekiq
is configured with a PCIe-capable FPGA image. Applications designed to make use of PCIe as the primary transport
layer will therefore require no additional actions in order to properly function. If another transport layer is required,
such as USB, and/or the original PCIe image was erased, Epiq Solutions provides pre-generated FPGA image files to
each customer within the Sidekiq image that can be saved into on board flash memory or dynamically loaded into
the FPGA RAM at run time. Currently, the following files are provided in sidekiq_image_current/fpga/.

• sidekiq_image_mpcie_xport_pcie_latest.bin: Configures the FPGA on a mini PCIe Sidekiq card for use over
PCIe.

• sidekiq_image_mpcie_xport_usb_latest.bin: Configures the FPGA on a mini PCIe Sidekiq card for use over
USB.

• sidekiq_image_m2_xport_pcie_latest.bit: Configures the FPGA on an m.2 Sidekiq card for use over PCIe.

• sidekiq_image_m2_xport_usb_latest.bit: Configures the FPGA on an m.2 Sidekiq card for use over USB.

• sidekiq_image_x2_xport_pcie_latest.bin: Configures the FPGA on Sidekiq X2 card for use over PCIe on the
HiTech Global K-800 FMC Carrier (https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html)

• sidekiq_image_x2_xcku115_xport_pcie_latest.bin: Configures the FPGA on Sidekiq X2 card for
use over PCIe on the HiTech Global K-800 FMC Carrier (with Xilinx Kintex Ultrascale KU115)
(https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html)

• sidekiq_image_x4_xport_pcie_latest.bin: Configures the FPGA on Sidekiq X4 card for use over PCIe on the
HiTech Global K-800 FMC Carrier (https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html)

• sidekiq_image_x4_xcku115_xport_pcie_latest.bin: Configures the FPGA on Sidekiq X4 card for
use over PCIe on the HiTech Global K-800 FMC Carrier (with Xilinx Kintex Ultrascale KU115)
(https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html)

• sidekiq_image_m2_2280_xport_pcie_latest.bit: Configures the FPGA on a Sidekiq Stretch card for use over
PCIe.

• sidekiq_image_nv100_xport_pcie_latest.bit: Configures the FPGA on a Sidekiq NV100 card for use over
PCIe

• sidekiq_image_z3u_latest.bit: Configures the FPGA on a Matchstiq Z3u for use over custom transport

Additionally, it is possible to create custom FPGA images for Sidekiq that implement user defined signal processing
routines over either the PCIe or USB transport layer. For further details regarding custom FPGA images, refer to
associated Sidekiq product’s FPGA Developer’s Manual.

7.2.2 Updating the FPGA
The FPGA image can be loaded into the RAM (mPCIe / m.2 / Z2 / Z3u for full reconfiguration and Stretch for partial
reconfiguration) or it can be loaded from the flash. The FPGA image is automatically loaded from flash when the
Sidekiq is powered up. A new image (full or partial) can be loaded into RAM for Sidekiq mPCIe, m.2, Z2, Stretch, or
Matchstiq Z3u via the prog_fpga test application or with the skiq_prog_fpga_from_file() API.

In addition to modifying just the runtime FPGA configuration, the FPGA image loaded from flash can be updated
with the store_user_fpga test application or via the skiq_save_fpga_config_to_flash() function *. Additionally,
the FPGA configuration can be reloaded via the skiq_prog_fpga_from_flash() API (not supported for Sidekiq Z2 or

7.2. FPGAProgramming 102

https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html
https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html
https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html
https://www.xilinx.com/products/boards-and-kits/1-96z8ax.html

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Matchstiq Z3u). The FPGA configuration that is stored in flash is automatically loaded from flash when the Sidekiq
card is powered up.

At this time, the Annapolis Micro Systems’ WILDSTAR (WB3XZD) FMC Carrier’s FPGA bitstream can only be updated
by using Vivado and the Xilinx Virtual Cable interface. Please refer to the FPGA PDK documentation for further
details.

When developing an application that updates the FPGA, it is highly suggested to take steps to pre-
vent function calls that write to the FPGA or flash memory (such as the skiq_prog_fpga_from_file() or
skiq_save_fpga_config_to_flash() API calls) from being interrupted and causing a partial write to occur. For
UNIX-based systems, this involves masking and unmasking the SIGINT and SIGTERM signals such that these signals
– which would normally halt execution of the program – are delayed until after the FPGA programming is finished.
Also, it is advised to temporarily mask the SIGINT and SIGTERM signals before calling the skiq_init() API call.
skiq_init() may create additional threads that can receive and process signals unless specified by the parent thread
(as threads inherit signal masks from their parent thread). See the prog_fpga.c test application source code for more
details.
* - storing to flash not supported for Sidekiq Z2 and Matchstiq Z3u.

7.2.3 FPGA Images in Flash *
All Sidekiq products’ flash memory have enough capacity to store at least two FPGA images: a golden (or fall-
back) image and a user image. As long as the user FPGA image is valid, this will be the image loaded from
flash upon either power up or when the user requested that the FPGA image is reloaded from flash via the
skiq_prog_fpga_from_flash() function.

If the user FPGA image stored in flash is not a valid configuration, the Sidekiq will automatically fallback to
configure the FPGA with the golden image stored in flash. The golden FPGA image does not provide full
Sidekiq capabilities. However, it does provide the ability to access the flash via the FPGA to store a new user
FPGA image in flash. A new user FPGA image can be stored to flash via the store_user_fpga test applica-
tion or via the skiq_save_fpga_config_to_flash() function. A golden FPGA image must already be present in
flash prior to updating the user flash image. The presence of the golden image in flash can be tested via the
skiq_read_golden_fpga_present_in_flash(). Updating an FPGA image saved in flash can be performed via the
PCIe or USB interfaces as long as a valid golden image has already been programmed.

The golden FPGA image is a fallback option in case the user FPGA image in flash is either corrupted or incomplete.
There is no ability for the user to program their own golden FPGA bitstream. The golden FPGA image is programmed
either in the factory or while applying a Sidekiq system update if a golden image has not already been saved to flash.
* - storing to flash not supported for Sidekiq Z2 and Matchstiq Z3u.

FPGAConfiguration Flash Slots
Starting in libsidekiq v4.12.0, for certain Sidekiq products, there are additional storage locations in the on-board
flash for FPGA bitstreams. This means that multiple FPGA bitstreams can be stored in flash and the FPGA can be
configured from any slot that contains a valid bitstream. Each flash configuration slot contains the FPGA bitstream
and has 64 bits of metadata associated with the slot. The user may use this metadata to create a mapping between
the stored bitstream and its intended purpose. For example, the user can store an abbreviated hash of the bitstream
in the metadata so that a full dump of the flash contents is not necessary when verifying what bitstream is stored in
the config slot.

There are six new API functions that provide access to the flash configuration slots and they are listed here with a
brief description:

• skiq_prog_fpga_from_flash_slot() – provides the caller the ability to configure the FPGA from the specified
slot

7.2. FPGAProgramming 103

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

• skiq_save_fpga_config_to_flash_slot() – stores an FPGA bitstream at the specified slot

• skiq_verify_fpga_config_in_flash_slot() – verifies the contents of the flash configuration slot against the
specified FILE stream

• skiq_read_fpga_config_flash_slot_metadata() – reads the 64-bit metadata associated with the specified
flash configuration slot

• skiq_find_fpga_config_flash_slot_metadata() – iterates through the available flash configuration slots to
find the specified metadata

• skiq_read_fpga_config_flash_slots_avail() – provides the caller with the number of available slots for a
given card

As of libsidekiq v4.12.0, there are three Sidekiq products that may have more than one configuration slot available.
The Sidekiq Stretch (M.2-2280) has six configuration slots available. The Sidekiq X2 and Sidekiq X4, when part of
the HTG-K800 FMC carrier (Xilinx KU060 only), each have two configuration slots available. The Sidekiq NV100 has
six configuration slots available as of libsidekiq v4.17.0.

7.3 Power consumption states (mPCIe, m.2)
As of libsidekiq v3.5.0, the Sidekiq has three distinct power consumption states: Idle, RX, and RX/TX. Each state is
entered / exited automatically by way of existing API function calls and initialization levels. Using an initialization
level of skiq_xport_init_level_full in a call to skiq_init() brings the RFIC out of low power mode and into the
RX state. However, using an initialization level of skiq_xport_init_level_basic in a call to skiq_init() does not
change the RFIC power state.

The Sidekiq transmit line-up stays powered down after a call to skiq_init() until skiq_write_tx_LO_freq() is called
for the first time. It will then only be powered down (along with the rest of the RFIC) on a call to skiq_exit(). Sidekiq
Power State Consumption (in Watts) (page 105) shows the different power consumption states and their associated
transitions.

Fig. 7.1: Sidekiq power state transitions

7.3. Power consumption states (mPCIe, m.2) 104

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

There can be significant power consumption savings related to the three distinct states. outlines a typical example of
both a miniPCIe Sidekiq card and an m.2 Sidekiq card in the various power consumption states.

Note: These power consumption measurements will vary based on sample rate, transmit LO frequency, and transmit
attenuation.

The Idle state measurements were performed after a clean application shutdown. The RX state measurements were
performed using rx_benchmark with a sample rate of 45Msps. The RX/TX state measurements were performed using
tx_samples_async in four different configurations:

• fc=850MHz, tx_atten=0, sample_rate=10MHz, bw=10MHz, block-size=16380

• fc=850MHz, tx_atten=359, sample_rate=10MHz, bw=10MHz, block-size=16380

• fc=3.85GHz, tx_atten=0, sample_rate=10MHz, bw=10MHz, block-size=16380

• fc=3.85GHz, tx_atten=359, sample_rate=10MHz, bw=10MHz, block-size=16380

In libsidekiq version 3.4.1 and before, the Idle state’s power consumption varied depending on the previous state
(RX or “RX / TX”) since the RFIC did not enter a low power state.

Table 7.6: Sidekiq Power State Consumption (in Watts)
Hardware libsidekiq version Idle RX RX / TX
Sidekiq miniPCIe v3.4.1 and before 2.0 to 2.3 2.2 2.1 to 2.4

v3.5.0 and after 1.1 2.0 2.1 to 2.4
Sidekiq m.2 v3.4.1 and before 2.4 to 2.6 2.5 2.4 to 2.8

v3.5.0 and after 1.4 2.25 2.4 to 2.7

7.4 Sidekiq X4 -Methods of LO frequency tuning
There are three methods of tuning the LO frequency on the Sidekiq X4, with each method having advantages and
disadvantages that need to be considered based on the user’s system requirements. Each mode is described below
with respect to configuration, re-tuning, and differences from other modes. At the end, some real-world tuning
duration measurements are shown to help demonstrate what can typically be expected in a given Sidekiq X4 system.
Please note that the timing tests were performed with a Sidekiq X4 installed on a HiTech Global HTG-K800 PCIe
carrier card, and housed in a PCIe-to-Thunderbolt 3 chassis. An Intel NUC7 was connected to the PCIe-to-Thunderbolt
3 chassis over Thunderbolt 3. The test utilities were based upon the libsidekiq v4.13.0 release.

7.4.1 hop_on_timestamp (FPGA triggered)
The skiq_freq_tune_mode_hop_on_timestamp mode provides the fastest LO tuning times, using the FPGA to pulse a
GPIO connected to the ADRV9009 RFIC at a user-defined timestamp in order to tune the LO frequency at a precise
time. Once configured, the entire LO tuning operation is performed automatically by the FPGA without any additional
software intervention.

Configuration for hopping on timestamp
1. Configure the frequency tune mode to skiq_freq_tune_mode_hop_on_timestamp using

skiq_write_rx_freq_tune_mode()

2. Configure the frequency hop list and initial hop index using skiq_write_rx_freq_hop_list([freqA, freqB,
freqC], freqA_idx)

7.4. Sidekiq X4 -Methods of LO frequency tuning 105

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Perform frequency retune at a specified RF timestamp
The RFICs used on Sidekiq X4 and libsidekiq impose a restriction on how to perform frequency hopping. A hop index
can only be written to a “mailbox” slot on the RFIC. A hop operation executes a retune to the frequency in the “next”
slot, then delivers the index from the “mailbox” to the “next” slot. It acts much like a 2 element deep FIFO that
must have 1 or 2 indices enqueued and cannot go empty. Even though this approach is only required for Sidekiq X4,
libsidekiq presents a consistent interface across all radio products.

In this example, note that freqA is the first tuned frequency since freqA_idx is configured as the initial index in
Configuration step 2 from above.

1. Prepare the next hop index using skiq_write_next_rx_freq_hop(<card>, <hdl>, freqB_idx)

2. Perform the re-tune to freqA using skiq_perform_rx_freq_hop(<card>, <hdl>, <rf_timestamp>)

3. Once <rf_timestamp> has passed, tuning to freqA has completed

4. Prepare the next hop index using skiq_write_next_rx_freq_hop(<card>, <hdl>, freqC_idx)

5. Perform the re-tune to freqB using skiq_perform_rx_freq_hop(<card>, <hdl>, <rf_timestamp>)

6. Once <rf_timestamp> has passed, tuning to freqB has completed

Caveats
During standard LO tuning operations, software is in control of the entire process (including proper selection of
the RF preselect filter). When frequency hopping on a timestamp, the FPGA is in control, and doesn’t currently
coordinate selection of the RF preselect filter as part of the process. Thus, if the user-defined frequency hopping list
spans more than one of the preselect filter bands (shown below), then libsidekiq automatically chooses the “bypass”
filter path, where no preselect filtering is applied. This way the tuning speed is optimized for speed. Here are the
preselect bands on Sidekiq X4 for convenience:

• skiq_filt_390_to_620MHz

• skiq_filt_540_to_850MHz

• skiq_filt_770_to_1210MHz

• skiq_filt_1130_to_1760MHz

• skiq_filt_1680_to_2580MHz

• skiq_filt_2500_to_3880MHz

• skiq_filt_3800_to_6000MHz

7.4.2 hop_immediate (software triggered)
The skiq_freq_tune_mode_hop_immediate mode provides the second fastest LO tuning speed on Sidekiq X4. This
mode uses software to tell the ADRV9009 RFIC to perform the LO frequency hop operation immediately upon recep-
tion of a SPI command initiated by libsidekiq. This method is not as deterministic as the hop-on-timestamp mode,
since the host’s CPU load and transport layer between the CPU and FPGA (typically PCIe) affects communication
latency.

Configuration for hopping immediately
1. Configure the frequency tune mode to skiq_freq_tune_mode_hop_immediate using

skiq_write_rx_freq_tune_mode()

7.4. Sidekiq X4 -Methods of LO frequency tuning 106

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

2. Configure the frequency hop list and initial hop index using skiq_write_rx_freq_hop_list([freqA, freqB,
freqC], freqA_idx)

Perform frequency retune immediately
The RFICs used on Sidekiq X4 and libsidekiq impose a restriction on how to perform frequency hopping. A hop index
can only be written to a “mailbox” slot on the RFIC. A hop operation executes a retune to the frequency in the “next”
slot, then delivers the index from the “mailbox” to the “next” slot. It acts much like a 2 element deep FIFO that
must have 1 or 2 indices enqueued and cannot go empty. Even though this approach is only required for Sidekiq X4,
libsidekiq presents a consistent interface across all radio products.

In this example, note that freqA is the first tuned frequency since freqA_idx is configured as the initial index in
Configuration step 2 from above.

1. Prepare the next hop index using skiq_write_next_rx_freq_hop(<card>, <hdl>, freqB_idx)

2. Perform the re-tune to freqA using skiq_perform_rx_freq_hop(<card>, <hdl>, 0) – specifying 0 as the times-
tamp means “immediate”

3. Prepare the next hop index using skiq_write_next_rx_freq_hop(<card>, <hdl>, freqC_idx)

4. Perform the re-tune to freqB using skiq_perform_rx_freq_hop(<card>, <hdl>, 0) – specifying 0 as the times-
tamp means “immediate”

Differences from hop_on_timestamp

In the “hop immediate” mode, the RF frontend is controlled by software so the preselect filters are used _even if
the hop list spans more than one frequency band. This is different from “hop on timestamp” where the preselect
filters are configured only _once_ whenever the hop list is written. This also means that the “hop immediate” mode
performance is limited by the speed of the SPI transactions to configure the RF frontend.

7.4.3 Standard tune
The standard tune mode is the default LO tuning mode for libsidekiq, and is implemented for all Sidekiq products.
Compared to the previously described hopping modes, this is the slowest LO tuning mode on Sidekiq X4, but also
provides the most flexibility in terms of RF performance since the user can control the type(s) of receive calibra-
tion and choose between automatic (re-tune initiated) or manual calibration (user-initiated). The standard tune
mode requires no special configuration to start using it: the user simply calls skiq_write_rx_LO_freq() as needed.
Similar to the “hop-immediate” mode, the standard tune mode engages the appropriate RF frontend preselect filter
configuration during the retune automatically based on the requested LO frequency.

1. Configure the frequency tune mode to skiq_freq_tune_mode_standard using
skiq_write_rx_freq_tune_mode() (Note: this is only needed if a different tune mode was previously
set by the user)

2. Use skiq_write_rx_LO_freq() as needed

Differences from hop_immediate

The standard tune mode performs receive calibration steps on the ADRV9009 RFIC as recommended by Analog De-
vices which can take upwards of one second to complete. These calibration steps ensure optimal quadrature error
correction (thus minimizing image/sideband artifacts), as well as minimizing any DC offset in the received signal.
The calibration operation is performed whenever the LO frequency is tuned more than 100MHz away from the
current LO frequency, which is also based on recommendations from Analog Devices. The operation is also per-
formed when the LO frequency crosses an RF PLL resolution boundary (see Talise User Guide for details). There are

7.4. Sidekiq X4 -Methods of LO frequency tuning 107

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

multiple calibration knobs (refer to skiq_rx_cal_type_t starting with libsidekiq v4.13.0) that can be independently
enabled/disabled through the libsidekiq API, thus allowing a user to strike the appropriate balance of performance
and tuning speed.

7.4.4 Comparisons between tuningmodes
The API call duration varies depending on which tuning mode is being used. The next table provides ranges of
performance based on the specific configuration described in the introduction.

Typical API call duration (Sidekiq X4 only)

TuningMode skiq_write_rx_LO_freq
skiq_freq_tune_mode_standard (> 3GHz) 7 - 8 ms2

skiq_freq_tune_mode_standard (≤ 3GHz) 9 - 17 ms2

In the skiq_freq_tune_mode_hop_immediate tuning mode, the two API calls skiq_write_next_rx_freq_hop() and
skiq_perform_freq_hop() are typically performed back-to-back so the total duration is shown below.

TuningMode skiq_write_next_rx_freq_hop and skiq_perform_rx_freq_hop
skiq_freq_tune_mode_hop_immediate 400 - 500 us

In the skiq_freq_tune_mode_hop_on_timestamp tuning mode, the two API calls skiq_write_next_rx_freq_hop()
and skiq_perform_freq_hop() can be separated in time so each call’s duration is shown below.

TuningMode skiq_write_next_rx_freq_hop skiq_perform_rx_freq_hop
skiq_freq_tune_mode_hop_on_timestamp ~250 us ~40 us

2 Only when retuning less than 100MHz from current LO frequency, otherwise calibration is performed and takes time to complete.

7.4. Sidekiq X4 -Methods of LO frequency tuning 108

Epiq Solutions Proprietary

8 Errata

8.1 Software Errata
For a complete and up-to-date list of Software Errata, please visit https://support.epiqsolutions.com/viewtopic.php?
f=115&t=2536

8.1.1 Errata SW1
Issue Description
The HTG-K800 FMC carrier’s flash contents may fail to program successfully (~7%). When the flash fails to program
in this manner, the user bitstream will subsequently fail to configure the FPGA and the fallback FPGA bitstream is
ignored. If a user encounters this issue, currently the only means of recovery is to overwrite the carrier card flash
contents using the JTAG pod.

Affected Product(s):
• Sidekiq X2 PDK (Thunderbolt 3 Chassis)

Impact Version(s):
• libsidekiq v4.2.x

• libsidekiq v4.4.x

• libsidekiq v4.6.0

Resolution:
When using the store_user_fpga test application, use the --verify command line option to
verify the bitstream is correct after programming it to flash. In the software API, use the
skiq_verify_fpga_config_from_flash() function after using skiq_save_fpga_config_to_flash() and check
that the return code of skiq_verify_fpga_config_from_flash() is 0.

Fixed in:
libsidekiq v4.7.0 contains a fix for this intermittent flash erase / programming behavior. However, as with any unat-
tended update procedure, it is still recommended that the verification step be performed where critical operations
are in use.

109

https://support.epiqsolutions.com/viewtopic.php?f=115&t=2536
https://support.epiqsolutions.com/viewtopic.php?f=115&t=2536

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

8.1.2 Errata SW2
Issue Description
The expected locations of the fallback (aka golden) and user bitstreams have been updated in the HTG-K800 FMC
carrier card’s flash starting in libsidekiq v4.7.0 and later.

Affected Product(s):
• Sidekiq X2 PDK (Thunderbolt 3 Chassis)

Affected API Function(s):
• skiq_save_fpga_config_to_flash

Impact Version(s):
• libsidekiq v4.2.x

• libsidekiq v4.4.x

• libsidekiq v4.6.x

Resolution:
In order to better support FPGA bitstream fallback and to support full-sized FPGA bitstreams, it was necessary to
change the locations of the fallback and user bitstreams.

The sidekiq_hardware_updater_for_v4.7.0.sh script will take care of flashing the fallback and user bitstreams to
their new locations (only if needed).

After the bitstreams are relocated, if an application compiled against an impacted version (see above) of libsidekiq
uses skiq_save_fpga_config_to_flash(), an error will be emitted stating that “golden FPGA not present, cannot
update user FPGA image”. A user must use libsidekiq v4.7.0 or later in conjunction with relocated bitstreams in order
to store a user bitstream to non-volatile memory.

If a user wishes to revert the relocation, they may run a sidekiq_hardware_updater from a release prior to v4.7.0.

8.1.3 Errata SW3
Issue Description:
A flash transaction on the HTG-K800 FMC carrier can fail intermittently and without detection. A user may see the
warning message “Quad SPI operation bit needed assertion” emitted, however the software does not react correctly to
address the warning.

Affected Product(s):
• Sidekiq X2 PDK (Thunderbolt 3 Chassis)

• Sidekiq X4 PDK (Thunderbolt 3 Chassis)

8.1. Software Errata 110

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Affected API Function(s):
• skiq_save_fpga_config_to_flash

• skiq_verify_fpga_config_from_flash

Affected Test Application(s) / Utilities:
• sidekiq_hardware_updater.sh

• store_user_fpga

Impact Version(s):
• libsidekiq v4.2.x

• libsidekiq v4.4.x

• libsidekiq v4.6.x

• libsidekiq v4.7.x

• libsidekiq v4.8.x

• libsidekiq v4.9.0 through v4.9.3

Resolution:

Danger: Do not use the sidekiq_hardware_updater.sh utility prior to v4.9.4 to upgrade or downgrade an X2
PDK or X4 PDK system. Only use the updaters and installers from the System Update v4.9.4 20190503 and later

Danger: Do not use the store_user_fpga test application prior to v4.9.4 on an X2 PDK or X4 PDK system. Use
the store_user_fpga test application from the v4.9.4 SDK or the run-time/complete installer from the System
Update v4.9.4 20190503 and later

If your application uses either of the affected API functions, you must update to libsidekiq SDK v4.9.4 or there is a
risk of incorrect flash behavior (corruption).

8.1.4 Errata SW4
Issue Description:
Memory allocated for skiq_tx_block_t may not be aligned on a memory page boundary. When a misaligned
skiq_tx_block_t is transferred to the FPGA, it is mishandled, resulting in corrupt samples inadvertently added
to the sample block being transmitted.

Affected Product(s):
• Sidekiq X4 HTG platforms with 8 lane PCIe support (HTG-K800, HTG-K810)

• FPGA bitstreams >= v3.14.1

8.1. Software Errata 111

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Affected API Function(s) /Macros:
• skiq_tx_block_allocate

• skiq_tx_block_allocate_by_bytes

• SKIQ_TX_BLOCK_INITIALIZER

• SKIQ_TX_BLOCK_INITIALIZER_BY_BYTES

• SKIQ_TX_BLOCK_INITIALIZER_BY_WORDS

Affected Test Application(s) / Utilities:
• tx_samples, tx_benchmark, xcv_benchmark

Impact Version(s):
• libsidekiq v4.7.0 through v4.16.2

Resolution:
Libsidekiq v4.17.0 will page align memory when allocating for Tx blocks. By default, a page size of 4K is used,
but can be overridden by #defining SKIQ_TX_BLOCK_MEMORY_ALIGN. If an application uses any of the affected API
functions, it must be updated to libsidekiq SDK v4.17.0 or there is a risk of incorrect data being transmitted by the
FPGA.

8.1.5 Errata SW5
Issue Description:
When transmitting on timestamps, four samples are erroneously sent when the packet is received, regardless of the
specified timestamp. This can be four samples from a previous packet, or samples from the current packet.

Affected Product(s):
• Sidekiq X2 PDK (Thunderbolt 3 Chassis)

• Sidekiq X4 PDK (Thunderbolt 3 Chassis) and Sidekiq X4 PCIe Blade

Affected Test Application(s) / Utilities:
• tx_samples, tx_samples_async, fdd_rx_tx_samples, tdd_rx_tx_samples

Impact Version(s):
• FPGA bitstreams version v3.14.1 through v3.15.1

8.1. Software Errata 112

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Resolution:
If transmit on timestamp is utilized, please use a FPGA bitstream with a version prior to v3.14.1 when this defect
was introduced or version v3.16.1 and later when the issue was resolved.

8.1. Software Errata 113

Epiq Solutions Proprietary

9 Troubleshooting

9.1 Troubleshooting a Sidekiq Installed in a NewHost *
The following subsections address common issues when attempting to use a Sidekiq card in a new host system. If
there are any questions on these steps or if additional problems are encountered, contact Epiq Solutions support, [5]
(page 8).

9.1.1 Observing The LED State (SidekiqmPCIe and Sidekiqm.2 only)
If the Sidekiq card is not appearing when running the version_test application, basic hardware functionality can be
determined by monitoring the state of the LEDs on the Sidekiq card. This can be done independent of the drivers or
kernel version.

With the Sidekiq installed in the host system, the host can be powered on and the 2 LEDs on the card described as
User LED #1 (near the edge of the board) and User LED #2 (towards the middle of the board). These LED locations
are highlighted in Figure 2 of the Hardware User’s Manual.

When powering up the host, LED #2 turn on and quickly off, and then about a half second later, turn back on. This
LED reflects the state of the FPGA configuration being loaded. At some point, either at the same time or later during
the boot process, LED #1 should also turn on. This LED reflects the state of the PCIe link. If LED 1 is on, then the
PCIe link has been established successfully. If both LEDs are on, then there is a good chance that the hardware will
enumerate correctly on the host.

If the LEDs do not behave as described above, contact Epiq Solutions support, [5] (page 8), with information on
what the behavior of the LEDs are and the host system being used.

9.1.2 Verifying the Hardware Interfaces Detected in Linux
Once the host completes booting into Linux, the USB and PCIe interfaces (if present) of the Sidekiq card can be
detected (independent of kernel or driver versions). The USB interface can be checked by running lsusb. The output
of lsusb from the Sidekiq PDK laptop is shown below. The line highlighted below is a Sidekiq mPCIe card.

Bus 001 Device 002: ID 8087:8008 Intel Corp.
Bus 002 Device 002: ID 8087:8000 Intel Corp.
Bus 003 Device 002: ID 04b4:1004 Cypress Semiconductor Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 0c45:64d0 Microdia
Bus 002 Device 003: ID 8087:07da Intel Corp.
Bus 002 Device 004: ID 0a5c:5801 Broadcom Corp. BCM5880 Secure Applications Processor

114

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

Not all host systems connect the USB interface on the miniPCIe or M.2 connector to the processor. If lsusb does not
show the Sidekiq card, it is possible that the host system being used does not have the USB routed properly. If this is
observed, contact Epiq Solutions support, [5] (page 8), with information on the host system being used. Also note
that Sidekiq mPCIe and Sidekiq m.2 have USB interfaces whereas other Sidekiq products do not.

Table 9.1: Sidekiq PCIe PID/VID Identifiers
Product PID / VID
Sidekiq mPCIe 19AA:E004
Sidekiq m.2 19AA:7021
Sidekiq Stretch (m.2-2280) 19AA:2280
Sidekiq NV100 19AA:2280
Sidekiq X2 19AA:5832
Sidekiq X4 19AA:5832

The PCIe interface can be checked by running lspci. The output of lspci executed on the Sidekiq PDK laptop is
shown below, where a Sidekiq mPCIe card is highlighted.

00:00.0 Host bridge: Intel Corporation Xeon E3-1200 v3/4th Gen Core Processor DRAM Controller
00:01.0 PCI bridge: Intel Corporation Xeon E3-1200 v3/4th Gen Core Processor PCI Express x16 Controller
00:02.0 VGA compatible controller: Intel Corporation 4th Gen Core Processor Integrated Graphics Controller
00:03.0 Audio device: Intel Corporation Xeon E3-1200 v3/4th Gen Core Processor HD Audio Controller
00:14.0 USB controller: Intel Corporation 8 Series/C220 Series Chipset Family USB xHCI
00:16.0 Communication controller: Intel Corporation 8 Series/C220 Series Chipset Family MEI Controller #1
00:16.3 Serial controller: Intel Corporation 8 Series/C220 Series Chipset Family KT Controller
00:19.0 Ethernet controller: Intel Corporation Ethernet Connection I217-LM
00:1a.0 USB controller: Intel Corporation 8 Series/C220 Series Chipset Family USB EHCI #2
00:1b.0 Audio device: Intel Corporation 8 Series/C220 Series Chipset High Definition Audio Controller
00:1c.0 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #1
00:1c.2 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #3
00:1c.4 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #5
00:1c.5 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #6
00:1c.6 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #7
00:1c.7 PCI bridge: Intel Corporation 8 Series/C220 Series Chipset Family PCI Express Root Port #8
00:1d.0 USB controller: Intel Corporation 8 Series/C220 Series Chipset Family USB EHCI #1
00:1f.0 ISA bridge: Intel Corporation QM87 Express LPC Controller
00:1f.2 RAID bus controller: Intel Corporation 82801 Mobile SATA Controller [RAID mode]
00:1f.3 SMBus: Intel Corporation 8 Series/C220 Series Chipset Family SMBus Controller
01:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI]
02:00.0 Signal processing controller: Device 19aa:e004
03:00.0 Network controller: Intel Corporation Centrino Advanced-N 6235
0e:00.0 SD Host controller: O2 Micro, Inc. SD/MMC Card Reader Controller

If the PCIe interface is not present in the lspci output, contact Epiq Solutions support, [5] (page 8), with information
on the host system being used.

If both the USB and PCIe interfaces are detected by Linux properly, then it is likely that the Sidekiq card will work
properly with the host system.

Note: The Sidekiq X2, X4, and Stretch will not be present on the host’s USB.

9.1.3 Checking Kernel andDrivers
The Sidekiq drivers are automatically loaded on bootup through either a systemd or init.d script depending on the
host operating system. In a systemd configuration, the service script is located at /lib/systemd/system/sidekiq.

9.1. Troubleshooting a Sidekiq Installed in a NewHost * 115

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

service where as the init.d script is located at /etc/init.d/sidekiq. In order for proper behavior, the kernel version
used must match the kernel versions listed in Developing for Alternative Host Platforms (page 80). To request an
alternative kernel or further details on driver validation, contact Epiq Solutions support, [5] (page 8).
* - this section does not apply to Sidekiq Z2 and Matchstiq Z3u

9.2 Frequently AskedQuestions
Q: What is the maximum rate that I/Q samples can be received from the FPGA to the CPU without dropping any
data?

A: Assuming no other application is executing on the CPU, and only simple operations are being performed on the
received data (such as storing it in to a RAM buffer), the DMA-based FPGA to CPU interface using the PCIe transport
can support a data transfer rate of ~50 Msamples/sec with mPCIe and can reach 61.44 Msamples/sec with m.2. A
sample rate of 50 Msamples/sec equates to approximately 200 MB/sec, which approaches the limit of the single lane,
Gen 1 PCIe interface. For USB, most systems can expect to run without issues at a data rate of ~10 Msamples/sec
assuming that the bus is not used with any other USB devices at the time of sample capture. Note that the maximum
throughput for both PCIe and USB is highly dependent on the host platform. For Sidekiq Z2, RX streaming on the
card can achieve a sample rate of approximately 35 Msamples/sec (depending on CPU use by other applications).

Q: What is the maximum rate that I/Q samples can be transferred between the RF receiver and the FPGA?

A: The digital interface between the A/D converters in each RF receiver and the FPGA support operation up to 61.44
Msamples/sec on Sidekiq mPCIe, m.2, Z2, and NV100, 153.6 Msamples/sec (or 245.76 Msps on RxB1) on Sidekiq
X2, and 250 Msamples/sec (or 500 Msps on RxC1 and RxD1) on Sidekiq X4. However, since this rate of data is
not always sustainable between the FPGA and the CPU, the FPGA must perform some level of custom processing to
reduce this data flow.

Q: Does the hardware support the ability to configure the FPGA registers and stream sample data across only the
USB interface?

A: Yes, the Sidekiq mPCIe and m.2 hardware does support streaming sample data across the USB interface, but
software currently only supports receiving data. Development is in progress to fully support transmit over USB. For
further details please contact Epiq Solutions [5] (page 8).

Q: Can CPU architecture X or Linux kernel version Y be used with Sidekiq?

A: Please contact Epiq Solutions’ support ([5] (page 8)) for any host platform inquiries.

Q: Either Error: failed calibration for reg 0x247, bit_pos 1, exiting or Error: failed calibration for
reg 0x05e, bit_pos 7, exiting is occurring when running an application. What could be the cause of this?

A: These errors most commonly occur if the Sidekiq is configured to use an external reference clock and that
reference clock is not present or inadequate. The specifications for the external reference clock requirements
are outlined in the Sidekiq Hardware User’s manual. The reference clock configuration can be checked with the
skiq_read_ref_clock_select() API and modified with the ref_clock test application provided.

Q: Is GNU Radio supported?

A: Yes, please refer to [7] (page 8). There are two general options for gr-sidekiq that are available. The preferred
method is to use libsidekiq to perform the interfacing to the radio. This version is the most full featured implemen-
tation and is available on the master branch. For embedded platforms (such as the Matchstiq S10) not running GNU

9.2. Frequently AskedQuestions 116

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

radio natively, a source-only block that interfaces with the SRFS application running on the embedded platform is
available on the srfs branch. This relies on the socket interface presented by the SRFS application to both configure
the radio and stream samples.

Q: Is MATLAB supported?

A: MATLAB is not currently supported with libsidekiq, though MATLAB may be used with the Z2 (using the IIO
network interface and the Analog Devices BSP). For more information, please refer to Epiq Solutions support [5]
(page 8).

Q: It appears as though signal frequencies close to DC are being attenuated. Is there any way to disable this?

A: The Sidekiq FPGA performs a DC offset correction using a simple leaky integrator. This is enabled by default but
can be disabled through the API call skiq_write_rx_dc_offset_corr(). Additionally, there is DC offset correction
provided by the RF IC. Disabling the RF IC DC offset correction and tracking is not currently supported.

Q: Why am I encountering various errors when configuring the FPGA to a different transport layer?

A: When programming the FPGA with a bitstream that implements the USB transport layer, errors will be generated
if the Sidekiq was previously configured and initialized to operate with PCIe. Likewise errors will occur when transi-
tioning from USB to PCIe. This is expected behavior due to libsidekiq being initialized to operate under constraints
that are no longer valid. In order to avoid further errors, it is advised to reboot the host.

Q: Can I disable any prints/logging from the Sidekiq library?

A: Yes, NULL can be passed to the skiq_register_logging() API to completely disable any log messages. Refer to
Logging (page 29) for more details.

Q: What should the bandwidth be configured to?

A: The bandwidth typically depends on the end application and the desired characteristics of the signal being received
or transmitted. However, in general, it is recommended to limit the bandwidth to a maximum of approximately 80%
of the sample rate.

Q: How is the gain configured?

A: The gain index, as an index into the configured gain table, is configured with skiq_write_rx_gain(). The ap-
proximate mapping of in dB is described in the API description of skiq_write_rx_gain(). Additionally, for a more
precise mapping in dB based on a per unit calibration is available. For details on using the per unit calibrated data,
refer to section Using receive calibration offsets (page 40).

Q: My timestamps are slipping, should this be happening?

A: Products that use the AD9361 RFIC will have timestamp slips when using API functions that need to deactivate
the sample clock in order to make updates to the radio configuration. This occurs when: updating the LO frequency,
updating the sample rate, and running the transmit quadrature calibration. It is recommended to use the system
clock - which is not subject to interruptions - if a consistent time source is needed. For a list of functions that affect
or are affected by the timestamp please refer to Timestamp slips within AD9361 Products, in the libsidekiq API
documentation.

Q: The server card is not detected when using the network transport, what could be the cause?

9.2. Frequently AskedQuestions 117

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

A: In order to use the Network Transport, the SKIQ_DAEMON_IP environment variable must be configured to the
server’s IP address. Additionally, the SKIQ_DAEMON_PORT environment variable must be configured to the port number
of the skiq_daemon. If the environment variables are configured and the server card still is not detected, ensure that
the skiq_daemon application is running on the server.

Q: The version_test application indicates an FPGA bitstream version of v0.0.0, what could be the cause?

A: This can happen on Sidekiq mPCIe or Sidekiq m.2 cards if libsidekiq detects a card’s USB interface, but is having
trouble interfacing with the card over PCIe. There could be a few underlying reasons that cause trouble interfacing
over PCIe. If all of these do not help, please contact Epiq Solutions support, [5] (page 8), with information on the
host system being used.

• PCIe presence:

– It may simply be that the host system is not detecting the card over PCIe. Check by using lspci -d 19aa:
to see if there’s the same number of entries for the expected number of Sidekiq cards.

• Device driver:

– Check to see if the dmadriver.ko kernel module is loaded:

* Running “lsmod”

* Running “grep dmadriver /proc/modules”

* Look through “dmesg” looking for entries beginning with “DMAD”

• Card manager cache:

– The card manager stores information it discovered about Sidekiq cards in a shared memory cache and
prior to libsidekiq v4.14.0, the card manager would only update its cache during the very first application
execution. If applications that use libsidekiq prior to v4.14.0 are the only ones in use, try rebooting the
system to clear and refresh the card manager cache. If there’s a mix of applications on the system, try
using the applications built against libsidekiq v4.14.0 or later.

9.2. Frequently AskedQuestions 118

Epiq Solutions Proprietary

10 Release Information

10.1 Known Issues / Limitations
There are some features that are either partially supported or unsupported. Below is a list of unsupported or limited
features.

10.1.1 PCIe only functions
In general, any function involved with transmitting data is currently supported only through PCIe or a custom
transport. Below is the specific list of functions that work only with the PCIe (or custom) interface.

int32_t skiq_start_tx_streaming (uint8_t card, skiq_tx_hdl_t hdl)
int32_t skiq_start_tx_streaming_on_1pps (uint8_t card, skiq_tx_hdl_t hdl, uint64_t sys_timestamp)
int32_t skiq_stop_tx_streaming (uint8_t card, skiq_tx_hdl_t hdl)
int32_t skiq_stop_tx_streaming_on_1pps (uint8_t card, skiq_tx_hdl_t hdl, uint64_t sys_timestamp)
int32_t skiq_write_tx_sample_rate_and_bandwidth (uint8_t card, skiq_tx_hdl_t hdl, uint32_t rate, uint32_t␣
→˓bandwidth)
int32_t skiq_transmit (uint8_t card, skiq_tx_hdl_t hdl, skiq_tx_block_t *p_block, void *p_user)

10.1.2 USB only functions
In general, any function involved in reconfiguring the FPGA on-the-fly is currently only supported through USB
(or Sidekiq Z2’s custom transport). Below is the specific list of functions that work only when those interfaces are
available.

int32_t skiq_prog_fpga_from_file (uint8_t card)

10.1.3 Limited Capabilities
int32_t skiq_read_rx_LO_freq (uint8_t card, skiq_rx_hdl_t hdl, uint64_t *p_freq, double *p_actual_freq)
int32_t skiq_read_tx_LO_freq (uint8_t card, skiq_tx_hdl_t hdl, uint64_t *p_freq, double *p_tuned_freq)

• Only returns cached frequency value, not actual tuned frequency

skiq_rx_status_t skiq_receive (uint8_t card, skiq_rx_hdl_t * p_hdl, skiq_rx_block_t** pp_data, uint32_t* p_data_
→˓len)

• For systems using a USB transport FPGA bitstream, all received data packets will have word four of the header
– containing SYSTEM META, RFIC CTRL OUT, OVRLD, HDL – set to zero.

119

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

10.2 Release History

Releases

• v4.17.2 - 28-Feb-2022 (page 121)

• v4.17.1 - 11-Feb-2022 (page 122)

• v4.17.0 - 15-Oct-2021 (page 122)

• v4.16.2 - 9-Sept-2021 (page 123)

• v4.16.1 - 9-Jun-2021 (page 124)

• v4.16.0 - 1-Jun-2021 (page 124)

• v4.15.2 - 31-Mar-2021 (page 125)

• v4.15.1 - 3-Mar-2021 (page 126)

• v4.15.0 - 3-Feb-2021 (page 126)

• v4.14.2 - 12/09/2020 (page 127)

• v4.14.1 - 10/30/2020 (page 128)

• v4.14.0 - 10/16/2020 (page 128)

• v4.13.1 - 09/10/2020 (page 130)

• v4.13.0 - 06/30/2020 (page 131)

• v4.12.2 - 04/06/2020 (page 132)

• v4.12.1 - 02/21/2020 (page 132)

• v4.12.0 - 02/10/2020 (page 133)

• v4.11.1 - 11/22/2019 (page 134)

• v4.11.0 - 10/17/2019 (page 134)

• v4.10.1 - 08/16/2019 (page 135)

• v4.10.0 - 07/30/2019 (page 136)

• v4.9.5 - 06/26/2019 (page 138)

• v4.9.4 - 05/03/2019 (page 138)

• v4.9.3 - 03/19/2019 (page 139)

• v4.9.2 - 03/08/2019 (page 139)

• v4.9.1 - 02/26/2019 (page 139)

• v4.9.0 - 02/06/2019 (page 140)

• v4.7.1 - 10/15/2018 (page 140)

• v4.7.0 - 09/24/2018 (page 141)

• v4.6.0 - 06/15/2018 (page 141)

• v4.4.0 - 11/02/2017 (page 142)

• v4.2.1 - 11/02/2017 (page 142)

10.2. Release History 120

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

• v4.2.0 - 09/29/2017 (page 143)

• v4.0.1 - 07/18/2017 (page 144)

• v4.0.0 - 05/15/2017 (page 144)

10.2.1 v4.17.2 - 28-Feb-2022
New Features for libsidekiq/FPGA

o New Features for v4.17.2

=== No new features for v4.17.2 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.17.2

=== All ===
- Disable libsidekiq’s internal custom transport when a user registers

their own transport so as not to interfere with device detection
- Downgrade logging message severity from WARN->INFO on a valid

operation mode of reduced number of Tx/Rx channels

=== Test Apps ===
- read_gpsdo.c

- Set "host" as the default 1PPS source
- Allow users to configure external 1PPS source

- tdd_rx_tx_samples.c
- Add additional command line parameters and utility functions

- tx_samples_async.c
- Restructure example application, improve the capability / command line options

=== Sidekiq mPCIe, M.2 ===
- Report FPGA bitstream version as unavailable instead of v0.0.0 if the
expected transport is absent

=== Sidekiq NV100 ===
- Correct the reporting of the Tx channel bandwidth on NV100

- Related API functions(s):
o skiq_read_tx_sample_rate_and_bandwidth()

=== Sidekiq X2 and Sidekiq X4 ===
- FPGA bitstream v3.16.1

- Fix Errata SW5: Transmit on timestamp will no longer erroneously send
four samples upon reception of the first packet.

- X4 transmit at maximum block size (65532) no longer drops packets

=== Sidekiq Z2 and Matchstiq Z3u ===
- Network Transport:

- Significantly improve initialization time

10.2. Release History 121

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

10.2.2 v4.17.1 - 11-Feb-2022
New Features for libsidekiq/FPGA

o New Features for v4.17.1

=== No new features for v4.17.1 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.17.1

=== Test Apps ===
- rx_samples_on_trigger.c

- Fix output file naming
- pps_tester.c

- Fix card detection logic

=== Sidekiq NV100 ===
- Fix receive path by setting RF input port after every re-tune of the LO
- Fix last calibrated LO frequency tracking for transmit paths
- Update RFIC profiles to accurately report RF transmit bandwidth

=== Sidekiq X4 ===
- Fix internal handle assignment following a re-initialization of a card.

This can happen in several cases of interacting with the libsidekiq API:
- If a user calls:

- skiq_disable_cards() followed by a call to skiq_enable_cards()
- skiq_exit() followed by a call to skiq_init()
- skiq_write_ref_clock_select() on its own
- skiq_write_ext_ref_clock_freq() on its own
- skiq_prog_fpga_from_flash() on its own

=== Matchstiq Z3u ===
- Fix setting RF isolation during TRX

=== Sidekiq mPCIe, M.2, Stretch, Z2, and Matchstiq Z3u ===
- Fix configuring RFIC back to defaults after a re-initialization. This can
happen in several cases of interacting with the libsidekiq API.

- If a user calls:
- skiq_disable_cards() followed by a call to skiq_enable_cards()
- skiq_exit() followed by a call to skiq_init()
- skiq_write_ref_clock_select() on its own
- skiq_write_ext_ref_clock_freq() on its own
- skiq_prog_fpga_from_flash() on its own

- Resolves "Rx filter caching issue after FPGA reprogramming" issue

10.2.3 v4.17.0 - 15-Oct-2021
New Features for libsidekiq/FPGA

o New Features for v4.17.0

=== All ===
- Add support for Sidekiq NV100 rev C

(continues on next page)

10.2. Release History 122

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

- Extend on-the-fly reference clock source switching to include frequency
- Related API function(s):

o skiq_write_ext_ref_clock_freq()
- Expose GPSDO lock state through new public API function

- Related API functions(s):
o skiq_gpsdo_is_locked()

- Example Test Application: (new)
o read_gpsdo

- Expose Sidekiq card's warp capabilities in skiq_param_t
- Improve rx_samples_on_trigger.c example application

=== Sidekiq mPCIe, M.2, Stretch, Z2, and Matchstiq Z3u ===
- Enable user override of AD9361 analog filter settings
- Related API function(s):

o skiq_read_rx_analog_filter_bandwidth()
o skiq_read_tx_analog_filter_bandwidth()
o skiq_write_rx_analog_filter_bandwidth()
o skiq_write_tx_analog_filter_bandwidth()

=== Sidekiq M.2 ===
- Add pull-ups to BOARD_ID pins on FPGA design

=== Matchstiq Z3u ===
- Significantly increased the sustained receive performance

=== Sidekiq X4 ===
- Update fdd_rx_tx_samples.c example application to add support for Sidekiq X4

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.17.0

=== All ===
- Update skiq_write_rx_dc_offset_corr() to return -ENOTSUP for Sidekiq X2 and X4
- Fix defect where skiq_gpsdo_read_freq_accuracy() reports success when there's no fix or 1PPS
- Disable all receive / transmit channels when disabling a specified card
- Fix defect when reading TCVCXO warp voltage prior to full initialization
- Fix defect where a card failed initialization if skiq_rx_cal_mode_auto is set
- Fix defect related to hotplugging when utilizing a custom transport

=== Sidekiq Z2 and Matchstiq Z3u ===
- Fix defect causing timestamp gaps when using network transport

10.2.4 v4.16.2 - 9-Sept-2021
New Features for libsidekiq/FPGA

o New Features for v4.16.2

=== All ===
- No new features added in v4.16.2

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.16.2

(continues on next page)

10.2. Release History 123

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== Matchstiq Z3u ===
- Fix occasional device initialization issue after reprogramming the FPGA

10.2.5 v4.16.1 - 9-Jun-2021
New Features for libsidekiq/FPGA

o New Features for v4.16.1

=== Sidekiq M.2 ===
- Add support for M.2 rev D hardware

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.16.1

=== Sidekiq Z2 and Matchstiq Z3u ===
- Fix card manager caching of network transport entries

=== Sidekiq mPCIe, M.2, Stretch, Z2, and Matchstiq Z3u ===
- Fix defect when specifying non-zero initial_index in calls to

skiq_write_rx_hop_list() or skiq_write_tx_hop_list()

10.2.6 v4.16.0 - 1-Jun-2021
New Features for libsidekiq/FPGA

o New Features for v4.16.0

=== All ===
- Prevent out-of-specification RF LO tune requests by returning an error

code. Check skiq_read_parameters() or the output from `version_test
--full` to determine the permitted tuning range.

- Perform a soft reset of all FPGA registers at card initialization and
exit

- In FPGA bitstreams v3.15.1 and later, add support for configuring the
transmit timestamp base for RF Sample Clock or System Clock. This
feature only applies when transmitting on timestamp.
- Related API functions(s):

o skiq_read_tx_timestamp_base()
o skiq_write_tx_timestamp_base()

=== Sidekiq Z2 ===
- Add support for network-based transport (see SDK manual for more

details)

=== Sidekiq X4 ===
- Add support on Windows 10 for FPGA designs v3.14.0 and later

=== Sidekiq Stretch ===
- Add support for GPSDO 1PPS source configuration (matches the system 1PPS

(continues on next page)

10.2. Release History 124

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

source configuration) on products that support the FPGA-based GPSDO
algorithm
- Related API function(s):

o skiq_read_1pps_source()
o skiq_write_1pps_source()

=== Matchstiq Z3u ===
- Add support for network-based transport (see SDK manual for more

details)
- Add GPSDO support

- Related API function(s):
o skiq_is_gpsdo_supported()
o skiq_gpsdo_enable()
o skiq_gpsdo_disable()
o skiq_gpsdo_is_enabled()
o skiq_gpsdo_read_freq_accuracy()

- Add support for GPSDO 1PPS source configuration (matches the system 1PPS
source configuration) on products that support the FPGA-based GPSDO
algorithm
- Related API function(s):

o skiq_read_1pps_source()
o skiq_write_1pps_source()

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.16.0

=== All ===
- Fix skiq_read_tx_tone_freq() when only frequency hopping to report

correct value
- FPGA bitstream v3.15.1

- Fix missing timestamp reset related to clock crossing synchronization
on the register interface

=== Sidekiq mPCIe, M.2, Stretch, Z2, and Matchstiq Z3u ===
- Fix tracking of DC offset calibration when switching internal RFIC RX

ports

=== Sidekiq M.2 and Stretch ===
- FPGA bitstream v3.15.1

- Fix Windows 10 enumeration related issues for Sidekiq M.2 and Sidekiq
Stretch

- Fix errantly flushing subsequent transmit burst packets after
encountering a late timestamp by limiting flush to full and partial
(i.e. arriving) packets in the FPGA FIFO

=== dmadriver ===
- Fix Physical Address Space verification against PCIe address space

- Addresses issues observed with 3rd-party NVIDIA Jetson carriers

10.2.7 v4.15.2 - 31-Mar-2021
New Features for libsidekiq/FPGA

o New Features for v4.15.2

(continues on next page)

10.2. Release History 125

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== sample applications ===
- Added 'pps_tester.c' sample application

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.15.2

=== Sidekiq X4 ===
- Resolved issue where spurs appeared intermittently after continuous
transmission for a relatively long duration (e.g. multiple seconds)

- Updated clock termination settings to match recommended values
- Improved JESD sync procedure

=== Sidekiq X2 ===
- Updated clock termination settings to match recommended values

=== Sidekiq mPCIe, M.2, Stretch, Z2, Z3u ===
- Fix off-by-one transmit frequency defect when frequency hopping
- Fix off-by-one receive filter selection defect when frequency hopping

10.2.8 v4.15.1 - 3-Mar-2021
New Features for libsidekiq/FPGA

o New Features for v4.15.1

=== Matchstiq Z3u ===
- Add support for Matchstiq Z3u rev C hardware

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.15.1

=== Sidekiq mPCIe, M.2, Stretch ===
- Fix unaligned packed receive samples after an LO re-tune

=== Matchstiq Z3u ===
- Prohibit unsupported packed mode setting for Matchstiq Z3u

10.2.9 v4.15.0 - 3-Feb-2021
New Features for libsidekiq/FPGA

o New Features for v4.15.0

=== All ===
- Add preliminary support for Matchstiq Z3u
- Identify out-of-specification RF LO tune requests by issuing a

message to user. Starting with libsidekiq v4.16.0, tune requests
outside of valid tuning range will result in a return error code.

(continues on next page)

10.2. Release History 126

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== Sidekiq mPCIe ===
- Add identification of hardware revision E

=== Sidekiq X4 ===
- Add API function to configure multiple handles in a single call

- Related API function(s):
o skiq_write_rx_sample_rate_and_bandwidth_multi()

- FPGA bitstream v3.14.1 on HTG-K800 and HTG-K810 carriers adds support
for PCIe Gen3 x8 lane as long as the host supports it

=== Sidekiq Stretch ===
- Add support for GPSDO

- Related API function(s):
o skiq_is_gpsdo_supported()
o skiq_gpsdo_enable()
o skiq_gpsdo_disable()
o skiq_gpsdo_is_enabled()
o skiq_gpsdo_read_freq_accuracy()

=== dmadriver ===
- Add DKMS support (if source code is licensed)
- Add support for Linux kernels v5.6 and v5.8

=== pci_manager, sidekiq_uart, sidekiq_gps ===
- Add DKMS support
- Add support for Linux kernels v5.6 and v5.8

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.15.0

=== All ===
- Lower 1PPS polling interval to help reduce overruns in the receive

streams
- FPGA bitstream v3.14.1

- Fixes reporting FIFO underruns in dual channel transmit
applications

- Fixes streaming synchronization issue on 1PPS where samples started
flowing up to 1 second prior to function returning control to the
caller.

=== Sidekiq Z2 ===
- FPGA bitstream v3.14.1
- Fixes empty FIFO issue in FPGA that resulted in intermittent

receive block corruption
- Fixes errant packed mode in FPGA on platforms that do not support

packed mode that resulted in timestamp gaps and receive block
corruption

10.2.10 v4.14.2 - 12/09/2020
New Features for libsidekiq/FPGA

o New Features for v4.14.2

(continues on next page)

10.2. Release History 127

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== No new features for v4.14.2 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.14.2

=== Sidekiq Z2 ===
- Fix receive streaming after call to skiq_prog_fpga_from_file() on BSP

v3.1.0

=== Example Applications ===
- Add missing rf-port-config parameter in tdd_rx_tx_samples.c
- Add call to skiq_set_rx_transfer_timeout() in rx_samples_on_trigger.c
when --blocking is specified

- Bundle prog_fpga in pre-built applications for Sidekiq Z2

10.2.11 v4.14.1 - 10/30/2020
New Features for libsidekiq/FPGA

o New Features for v4.14.1

=== No new features for v4.14.1 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.14.1

=== All ===
- Internally restore the configured channel mode when calling

skiq_prog_rfic_from_file() instead of defaulting to
skiq_chan_mode_single

- Realign receive streams if an overrun is detected in skiq_receive()

=== Sidekiq Z2 ===
- Update libsidekiq product capabilities to reflect that Sidekiq Z2 does

not support packed mode of I/Q sample blocks

10.2.12 v4.14.0 - 10/16/2020
New Features for libsidekiq/FPGA

o New Features for v4.14.0

=== All ===
- Add support for hotplug of Sidekiq devices by identifying addition,

removal, or replacing a card. See the Software Development Manual for
more details.

- Add support for automatically calling skiq_exit() as a precaution at
Linux application exit (unintentional or otherwise).
- New Related API function(s):

o skiq_set_exit_handler_state()

(continues on next page)

10.2. Release History 128

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== Sidekiq mPCIe, M.2 ===
- Add support for configuring the RX calibration mode and type mask.

- Related API function(s):
o skiq_read_rx_cal_mode()
o skiq_write_rx_cal_mode()
o skiq_run_rx_cal()
o skiq_read_rx_cal_type_mask()
o skiq_write_rx_cal_type_mask()
o skiq_read_rx_cal_types_avail()

=== Sidekiq Z2 ===
- Add support for run-time reference clock source management and control

- Related API function(s):
o skiq_write_ref_clock_select()

- Add support for configuring the RX calibration mode and type mask.
- Related API function(s):

o skiq_read_rx_cal_mode()
o skiq_write_rx_cal_mode()
o skiq_run_rx_cal()
o skiq_read_rx_cal_type_mask()
o skiq_write_rx_cal_type_mask()
o skiq_read_rx_cal_types_avail()

=== Sidekiq X2 ===
- Add support for run-time reference clock source management and control

- Related API function(s):
o skiq_write_ref_clock_select()

=== Sidekiq X4 ===
- Add FMC carrier support for HTG-K810 (Xilinx Kintex UltraScale COM

EXPRESS CPU Card (Type 6))
- Add support for run-time reference clock source management and control

- Related API function(s):
o skiq_write_ref_clock_select()

- Add support for RFIC pin control mode to allow enabling and disabling
receivers handles and transmitters handles from the FPGA.
- Related API function(s):

o skiq_read_rx_rfic_pin_ctrl_mode()
o skiq_read_tx_rfic_pin_ctrl_mode()
o skiq_write_rx_rfic_pin_ctrl_mode()
o skiq_write_tx_rfic_pin_ctrl_mode()

- Add support for FPGA bitstreams that have the decimator built for
RFIC B. Future FPGA PDKs for Sidekiq X4 on the HTG-K800 will offer a
build option for decimating samples from RFIC B.

=== Sidekiq Stretch ===
- Add support for run-time reference clock source management and control

- Related API function(s):
o skiq_write_ref_clock_select()

- Add support for configuring the RX calibration mode and type mask.
- Related API function(s):

o skiq_read_rx_cal_mode()
o skiq_write_rx_cal_mode()
o skiq_run_rx_cal()
o skiq_read_rx_cal_type_mask()

(continues on next page)

10.2. Release History 129

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o skiq_write_rx_cal_type_mask()
o skiq_read_rx_cal_types_avail()

=== Example Applications ===
- Convert fdd_rx_tx_samples.c and tdd_rx_tx_samples.c to use arg_parser.
- Add optional Sidekiq card temperature logging to rx_benchmark.c,

tx_benchmark.c, and xcv_benchmark.c

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.14.0

=== Sidekiq M.2, Stretch ===
- FPGA bitstream v3.14.0 fixes reporting of transmit block underruns

with the dual channel transmit mode. In previous bitstreams,
underruns were not always reported.

=== Sidekiq X4 ===
- Fix frequency hopping mode when using RxA2 with skiq_chan_mode_dual
- Fix frequency hopping on timestamp on RFIC B (any of RxB1, RxB2, TxB1,

TxB2)

=== dmadriver ===
- Fix registration of TTY and GPIO devices if the Sidekiq card is using

FPGA bitstream v3.14.0 or later. At this time, this only affects the
Sidekiq Stretch.

=== Example Applications ===
- Switch calling order between LO retuning API functions and sample rate

configuration API functions. Refer to the latest Software Development
Manual for more details on why calling order can matter.

10.2.13 v4.13.1 - 09/10/2020
New Features for libsidekiq/FPGA

o New Features for v4.13.1

=== Sidekiq mPCIe ===
- Add support for Sidekiq mPCIe rev D hardware

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.13.1

=== Sidekiq ===
- Fix known issue where frequency hopping would fail on a Sidekiq's RxA2

handle when channel mode is set to skiq_chan_mode_dual

=== Sidekiq mPCIe / M.2 / Z2 / Stretch ===
- Correct hop list returned by skiq_read_rx_freq_hop_list() and

skiq_read_tx_freq_hop_list()

=== Sidekiq X4 ===
- If a transmit test tone is enabled, restore its state after a sample

(continues on next page)

10.2. Release History 130

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

rate reconfiguration
- Revert some poll intervals values (see Features v4.13.0) since it can

adversely affect radio tuning and cause critical errors
- Disable receive LNAs during receive calibration to provide maximal

isolation
- Fix misconfiguration of pre-select filters on Sidekiq X4 rev C

10.2.14 v4.13.0 - 06/30/2020
New Features for libsidekiq/FPGA

o New Features for v4.13.0

=== Sidekiq ===
- Add API call to initialize libsidekiq without specifying any cards --

skiq_init_without_cards()
- Logging from AD9361 driver routed through libsidekiq logging facilities

=== Sidekiq X2 / X4 ===
- Add API functions to read/write/run RX calibration procedures manually

or automatically
- New functions include: skiq_read_rx_cal_mode, skiq_write_rx_cal_mode,

skiq_run_rx_cal, skiq_read_rx_cal_type_mask,
skiq_write_rx_cal_type_mask, skiq_read_rx_cal_types_avail

=== Sidekiq X4 ===
- Improve standard and frequency hop tune times by lowering poll intervals
- Add support for dual independently tunable RF transmit (A1 and B1)
- Add support for AMS 3U VPX WB3XBM platform
- Add support for importing RFIC profile from ADI's Profile Wizard

=== dmadriver ===
- Add support for larger DMA ring buffer for Rx operation when using PCIe
transport

- Add support for Linux v5.4 kernels

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.13.0

=== Sidekiq ===
- Fix known issue: Process forking and skiq_receive()

- With FPGA bitstream v3.13.1 and later along with libsidekiq v4.13.0 and
later, stale DMA data is no longer an issue.

- Fix skiq_save_fpga_config_to_flash() to reset metadata for config slot #0

=== Sidekiq Z2 ===
- Fix filter setting after calling skiq_disable_cards / skiq_enable_cards
- Fix known issue: FPGA reprogramming preserves transmit capability
(requires updated Z2 BSP)

=== Sidekiq X4 ===
- Address ADI-ERROR message(s) regarding "gain index exceeded expected
maximum or minimum value..." when restoring RFIC configuration changing

(continues on next page)

10.2. Release History 131

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

sample rate
- Fix ref_clock application so that verification no longer fails to execute

when an external reference clock is configured
- Extend calibration timeout from 8 seconds to 25 seconds as is recommended

by ADI

=== sidekiq_gps ===
- Fix known issue: GPIO values are retained and reapplied when reprogramming
the FPGA
- With dmadriver v5.4.0 and sidekiq_gps v1.0.1, the settings are retained

through an FPGA reprogramming.

10.2.15 v4.12.2 - 04/06/2020
New Features for libsidekiq/FPGA

o New Features for v4.12.2

=== No new features for v4.12.2 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.12.2

=== Sidekiq X4 ===
- Fix issue where RX calibration was inadvertently skipped for LO

frequencies around 4.2GHz

=== Sidekiq X2 ===
- Fix issue where system timestamp frequency could be incorrect after
loading a custom RFIC profile using skiq_prog_rfic_from_file

=== Sidekiq ===
- Eliminate race condition in skiq_read_last_1pps_timestamp() where
timestamps from different PPS periods could be returned

- Fix issue where custom transport was inadvertantly skipped on
aarch64.gcc6.3

- Resolved incorrect behavior with skiq_rx_stream_mode_low_latency that
could occur after FPGA re-programming

10.2.16 v4.12.1 - 02/21/2020
New Features for libsidekiq/FPGA

o New Features for v4.12.1

=== No new features for v4.12.1 ===

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.12.1

(continues on next page)

10.2. Release History 132

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== Sidekiq Stretch ===
- Restore reference clock selection and internal flash configuration after

FPGA reprogramming

=== Sidekiq ===
- Full reinitialization of RF front end configuration after FPGA
reprogramming

10.2.17 v4.12.0 - 02/10/2020
New Features for libsidekiq/FPGA

o New Features for v4.12.0

=== Sidekiq ===
- Add support for storing and accessing multiple FPGA bitstreams in flash on

supported devices. Refer to the latest SDK manual under the "FPGA
Configuration Flash Slots" section for more information.

=== Sidekiq mPCIe and M.2 ===
- FPGA bitstream v3.13.0 for the USB transport doubles the FPGA's RX FIFO

depth to help absorb delays by an overloaded host.

=== Sidekiq X2 ===
- Although the Sidekiq X2 does not support frequency hopping, the libsidekiq
API now allows a developer to use those functions with the X2. The
under-the-hood implementation uses the traditional tuning mode. This
allows developers to use a common tuning interface among products.

=== Sidekiq X4 ===
- Support for 4 channel transmit at sample rates of 491.52Msps and 500Msps
(400MHz or 450MHz RF BW) and transmit channels remain 4 channel phase
coherent. At this time, however, users may only transmit 4 channels using
the FPGA's BRAM. PCIe streaming is only supported for A1/A2. BRAM
playback is supported for A1/A2/B1/B2. If users are interested in PCIe
streaming to A1/B1, please contact Epiq Solutions through its support
forums.

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.12.0

=== Sidekiq Z2 ===
- Restore FPGA reprogramming functionality that was inadvertently removed in

libsidekiq v4.11.x

=== Sidekiq mPCIe + Dropkiq ===
- Significant performance improvement in frequency tuning speed, requires
FPGA bitstream v3.13.0 or later

=== Sidekiq Stretch ===
- FPGA bitstream v3.13.0 defaults the PPS source to the
`skiq_1pps_source_host`, the 1PPS signal from the on-board GPS module.

(continues on next page)

10.2. Release History 133

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

=== Sidekiq X4 ===
- TALISE_setRfPllFrequency() : Invalid rfpllLoFreq -- Fixed tuning failures

at LO frequencies that should be permitted for a configured RxA1/A2/B1/B2
RF bandwidth.

- Frequency hop list is retained when sample rate configuration is changed
- Restore 4 channel phase coherency functionality that was inadvertently

removed in libsidekiq v4.11.1

=== dmadriver ===
- Addressed incorrect usage of holding a spinlock across kernel calls

that can sleep

=== sidekiq_uart ===
- Addressed incorrect usage of mutex in timer callback

10.2.18 v4.11.1 - 11/22/2019
New Features for libsidekiq/FPGA

o New Features for v4.11.1

=== Sidekiq X2 ===
- Add support for the HTG-K800 FMC carrier with Xilinx Kintex Ultrascale

KU115

=== Sidekiq X4 ===
- Expand sample rate and bandwidth support on ORx handles (C1 and D1) to
include 491.52Msps and 500Msps.

- Add more sample rate and bandwidth RFIC profiles to match existing X2
RFIC profiles (see Limited Sidekiq X4 Capabilities below for a full
list)

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.11.1

=== Sidekiq Stretch (M.2-2280) ===
- Fix external 10MHz reference clock selection in ref_clock

=== Sidekiq X4 ===
- Restore Tx test tone after transmit calibration
- Fix frequency hop on timestamp

10.2.19 v4.11.0 - 10/17/2019
New Features for libsidekiq/FPGA

o New Features for v4.11.0

=== Sidekiq Stretch (M.2-2280) ===

(continues on next page)

10.2. Release History 134

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

- Add product support
- Receive, Transmit, and Transceive features fully functional
- See "Limited Capabilities of Sidekiq Stretch" for what's missing

- dmadriver v5.3.0.0 offers support for Stretch and its GPS/UART interface
- skiq_platform_device is required to be loaded prior to dmadriver
- sidekiq_uart and sidekiq_gps kernel modules are needed to receive NMEA

sentences

=== Sidekiq X4 ===
- Add support for the HTG-K800 FMC carrier with Xilinx Kintex Ultrascale
KU115

Bug Fixes for libsidekiq/FPGA

o Bug Fixes for v4.11.0

=== All ===
- Perform range check for entries in passed frequency hop list to

skiq_write_rx_freq_hop_list() and skiq_write_tx_freq_hop_list()

=== Sidekiq mPCIe / M.2 ===
- Fix reading / writing gain mode selection -- skiq_read_rx_gain_mode()
and skiq_write_rx_gain_mode()

=== Sidekiq Z2 ===
- Fix reading / writing gain mode selection -- skiq_read_rx_gain_mode()
and skiq_write_rx_gain_mode()

- Fix transport defect where starting streaming, stopping streaming, or
receiving sample blocks would result in an indefinite hang

=== Sidekiq X4 ===
- Fix invalid Rx filter selection when frequency hopping

10.2.20 v4.10.1 - 08/16/2019
New Features for Libsidekiq/FPGA

o New Features for v4.10.1

=== Sidekiq mPCIe / M.2 / Z2 ===
- Add support for skiq_freq_tune_mode_hop_on_timestamp mode.

NOTE: All frequencies in hopping list must fall within a
single filter band.

=== Sidekiq X4 ===
- Add support for skiq_freq_tune_mode_hop_on_timestamp mode.
NOTE: If all frequencies do not fall within a single filter
band, the bypass setting is used for all frequencies. Users
can override the filter setting at any point with the
skiq_write_rx_preselect_filter_path() API.

- Add RFIC profile for 50 Msps / 41 MHz channel bandwidth

Bug Fixes for Libsidekiq/FPGA

(continues on next page)

10.2. Release History 135

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o Bug Fixes for v4.10.1

=== All ===
- Add rx_samples_freq_hopping.c sample application to SDK
- Fix missing Jetson Xavier driver directory for JetPack 4.1.1
- Fix card index issue in rx_samples_on_trigger.c sample

application

=== Sidekiq X4 ===
- Improve JESD sync behavior to reduce number of necessary
retries

10.2.21 v4.10.0 - 07/30/2019
New Features for Libsidekiq/FPGA

o New Features for v4.10.0
Includes all new features from v4.9.5 and earlier

=== All ===
- Update tx_samples_async test application to use arg_parser
- Add support for swapping order of I/Q components in both

receive and transmit block formats
- skiq_write_iq_order_mode() and skiq_read_iq_order_mode()

- Extend access to more FPGA user app registers (banks 10 - 15)
- Deprecate SRFS across all platforms (except on Matchstiq S10 /

S20 series)
- Add support for JetPack 4.2 for Jetson TX2 and Xavier

=== Sidekiq mPCIe / M.2 / Z2 ===
- Add support for fast-lock profiles (receive)

- skiq_write_rx_freq_tune_mode / skiq_read_rx_freq_tune_mode
- skiq_write_rx_freq_hop_list / skiq_read_rx_freq_hop_list
- skiq_write_next_rx_freq_hop / skiq_perform_rx_freq_hop
- skiq_read_curr_rx_freq_hop / skiq_read_next_rx_freq_hop
- NOTE: The `skiq_freq_tune_mode_hop_on_timestamp`

skiq_freq_tune_mode_t functionality is not implemented as
part of this release

- Add support for fast-lock profiles (transmit)
- skiq_write_tx_freq_tune_mode / skiq_read_tx_freq_tune_mode
- skiq_write_tx_freq_hop_list / skiq_read_tx_freq_hop_list
- skiq_write_next_tx_freq_hop / skiq_perform_tx_freq_hop
- skiq_read_curr_tx_freq_hop / skiq_read_next_tx_freq_hop
- NOTE: The `skiq_freq_tune_mode_hop_on_timestamp`

skiq_freq_tune_mode_t functionality is not implemented as
part of this release

- Improve RFIC register transaction performance

=== Sidekiq X2 ===
- Add support for sample decimation in FPGA
- Sample decimation is enabled automatically dependent on

requested sample rate and channel bandwidth
- See "Sidekiq X2 Capabilities" for more details

=== Sidekiq X4 ===
(continues on next page)

10.2. Release History 136

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

- Add support for sample decimation in FPGA
- Sample decimation is enabled automatically dependent on

requested sample rate and channel bandwidth
- See "Sidekiq X4 Capabilities" for more details

- Add support for fast frequency hopping (receive)
- skiq_write_rx_freq_tune_mode / skiq_read_rx_freq_tune_mode
- skiq_write_rx_freq_hop_list / skiq_read_rx_freq_hop_list
- skiq_write_next_rx_freq_hop / skiq_perform_rx_freq_hop
- skiq_read_curr_rx_freq_hop / skiq_read_next_rx_freq_hop
- NOTE: The `skiq_freq_tune_mode_hop_on_timestamp`

skiq_freq_tune_mode_t functionality is not implemented as
part of this release

- Add support for fast frequency hopping (transmit)
- skiq_write_tx_freq_tune_mode / skiq_read_tx_freq_tune_mode
- skiq_write_tx_freq_hop_list / skiq_read_tx_freq_hop_list
- skiq_write_next_tx_freq_hop / skiq_perform_tx_freq_hop
- skiq_read_curr_tx_freq_hop / skiq_read_next_tx_freq_hop
- NOTE: The `skiq_freq_tune_mode_hop_on_timestamp`

skiq_freq_tune_mode_t functionality is not implemented as
part of this release

- Configure single channel on single JESD lane when appropriate
- Add support for 2-channel phase coherent transmit streaming
over PCIe (handles A1 and A2)

- Add test application to allow signal playback (transmit) from
FPGA BRAM independent of transport (requires support in FPGA
user app)
- This new feature can also be used to showcase 4-channel

phase coherent transmit

=== Windows ===
- Add digitally signed Windows USB INF driver for Windows 10
compatibility

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.10.0
- Includes all bug fixes from v4.9.5 and earlier

=== Sidekiq mPCIe / M.2 ===
- Fix FPGA transmit FIFO flushing behavior in timestamp mode and

large block sizes
- Fix missing clock configuration after

skiq_prog_rfic_from_file()
- Fix issue where AGC gets "stuck" until receiving a large

(~20-30dB) delta in signal strength

=== Sidekiq Z2 ===
- Fix missing clock configuration after
skiq_prog_rfic_from_file()

- Fix issue where AGC gets "stuck" until receiving a large
(~20-30dB) delta in signal strength

=== Sidekiq X2 / X4 ===
- Increase PCIe FIFO depth to deal with timestamp gaps at higher
sample rates and multiple receive handles

10.2. Release History 137

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

10.2.22 v4.9.5 - 06/26/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.5
o Add support for arm_cortex-a9.gcc7.2.1_gnueabihf build

configuration to support next Z2 BSP

o Add support for FPGA programming on Sidekiq Z2 with the
skiq_prog_fpga_from_file() API function
o WARNING: Transmit functionality after using

skiq_prog_fpga_from_file() on the Sidekiq Z2 is broken. This
remains an unresolved defect and will be addressed in future
software releases.

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.9.5
o Fix incorrectly reported transmit tone offset frequency when

using Dropkiq at lower frequencies
o Improve performance of the Z2 LO frequency retune operation
o Resolved intermittent "MCS failed" errors on Sidekiq X2 / X4 by

validating SYSREF pulse completion to the AD9528
o Fix hardware probe false positives when attempting to detect

Dropkiq

10.2.23 v4.9.4 - 05/03/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.4
o No new features

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.9.4
o Fix "Quad SPI operation bit needed assertion" errors on the

Sidekiq X2 PDK or Sidekiq X4 PDK
o Affects skiq_save_fpga_config_to_flash and

skiq_verify_fpga_config_from_flash
o Resolved initialization issue for PCIe-only Sidekiq M.2

configured with FPGA bitstreams prior to v3.5
o Prohibit unsupported packed mode setting for Sidekiq X2 and

Sidekiq X4
o Affects skiq_write_iq_pack_mode

o Fix 1PPS timeout approach to consider user specified system
timestamp
o Affects the following API functions:
o skiq_start_tx_streaming_on_1pps /

skiq_stop_tx_streaming_on_1pps
o skiq_start_rx_streaming_on_1pps /

skiq_stop_rx_streaming_on_1pps
o skiq_start_rx_streaming_multi_on_trigger /

skiq_stop_rx_streaming_multi_on_trigger
o Fix MCS failure on second initialization of Sidekiq X2

10.2. Release History 138

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

10.2.24 v4.9.3 - 03/19/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.3
o No new features

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.9.3
o Fix race condition in skiq_prog_from_file() / skiq_prog_from_flash() that

could cause a deadlock across multiple applications controlling different
Sidekiq cards

o Correct DAC resolution provided by skiq_read_tx_iq_resolution() for
Sidekiq X4, was 16 (incorrect), now 14 (correct)

10.2.25 v4.9.2 - 03/08/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.2
o No new features

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.9.2
o Prevent Sidekiq X4 from tuning the LO frequency to problematic values
o Fix M.2 dual channel transmit FIFO issue in FPGA design for M.2
o Fix "last TX timestamp" (affects API function skiq_read_last_tx_timestamp)

issue in FPGA design for mPCIe and M.2
o Update tx_configure, tx_samples, and tx_samples_async test applications to

set some of the "other" handle parameters when configured for dual channel
mode

10.2.26 v4.9.1 - 02/26/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.1
o Added 250Msps Sample Rate / 200 MHz Channel Bandwidth profile for Sidekiq X4
o Added a timeout when starting/stopping streaming upon 1PPS if 1PPS never occurs

Bug Fixes for Libsidekiq/FPGA

o Bug Fixes for v4.9.1
o Resolved issue with segfault observed with certain custom profiles for Sidekiq X2
o Resolved issue where register verification could fail at lower sample rates
o Implement retrying if configuring FPGA from flash fails (for Sidekiq M.2 / mPCIe)
o Revolved data streaming issues for Sidekiq X4 when using sample rates of

245.76Msps
o Reduced LO tuning time for Sidekiq X4
o Improved RX calibration settings for Sidekiq X4

10.2. Release History 139

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

10.2.27 v4.9.0 - 02/06/2019
New Features for Libsidekiq/FPGA

o New Features for v4.9.0
o Added ability to query any actively streaming RX handles

o skiq_read_rx_streaming_handles()
o Added ability to query conflicting RX stream handles

o skiq_read_rx_stream_handle_conflict()
o Added ability to start streaming synchronously

o skiq_start_rx_streaming_multi_synced()
o skiq_stop_rx_streaming_multi_synced()

o Added ability to configure TX test tone frequency (not available with all
products)
o skiq_read_tx_tone_freq_offset()
o skiq_write_tx_tone_freq_offset()

o Added ability to perform verification of user FPGA register after writing
o skiq_write_and_verify_user_fpga_reg()

o Added RF IC control output support for X2/X4
o skiq_read_rfic_control_output_rx_gain_config()
o skiq_enable_rfic_control_output_rx_gain()

o Added support for X4 revision B
o Added support for X4 RX C1 / D1 handles
o Added support for X4 transmit
o Refer to X4 limited capabilities for details on TX limitations
o Added support for 245.76Msps for Sidekiq X2 RX B1

o Includes features from v4.8.0
o Ability to enable/disable cards independently without reinitializing the library

o skiq_enable_cards()
o skiq_disable_cards()

o Added ability for users to create and load their own RF profiles for
Sidekiq X2 generated by Analog Devices' Filter Wizard (refer to the Sidekiq
Software Developer's Manual for additional details)

o skiq_prog_rfic_from_file()
o Added support for blocking receive when using a USB transport

Bug Fixes for Libsidekiq/FPGA

o Resolved issue with asynchronous transmit occasionally not completing
o Reduced tune times for Sidekiq X2
o Improved Windows performance for all Sidekiq products
o Improved RX streaming performance for Sidekiq Z2
o Added new return code to skiq_receive() in the case where data is requested
from a card not currently streaming
o skiq_rx_status_error_card_not_active

o Improved error reporting and handling

10.2.28 v4.7.1 - 10/15/2018
New Features for Libsidekiq/FPGA

o None

Bug Fixes for Libsidekiq/FPGA

(continues on next page)

10.2. Release History 140

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o Decreased complete / run-time installer sizes
o Add -std=gnu11 to CFLAGS in SDK Makefiles
o Resolved known JESD sync transmit issues on Sidekiq X2
o Resolved intermittent transmit timestamp hang on Sidekiq X2
o Resolved storage of Dropkiq factory calibration on Matchstiq S12

10.2.29 v4.7.0 - 09/24/2018
New Features for Libsidekiq/FPGA

o Sidekiq X2 rev C hardware support added
o Sidekiq Z2 rev C hardware support added
o Preliminary X4 rev A support added
o Balanced RX stream mode for Z2
o Transmit support for Z2
o Support for host reference clock for X2 (for use with Epiq's GPS module)
o Support for host 1PPS source for X2 (for use with Epiq's GPS module)
o X2 calibration support added
o Storage/query of calibration date added
o Added support for compiling for a specific target platform (Sidekiq Z2) for
a reduced application and library size

o Added support for warpable TCVCXO for Sidekiq X2 rev C

Bug Fixes for Libsidekiq/FPGA

o Improved reliability of flash reprogramming of X2 FPGA bitstream
o Resolved X2 FPGA reprogramming for larger bitstreams
o Resolved system timestamp frequency incorrectly reported after sample rate
configuration of the X2

o Resolved TX test tone frequency incorrectly reported with X2
o Resolved FPGA reprogramming inconsistencies when performed across multiple processes
o Resolved TX attenuation configuration reset after retune for X2
o Added full RF IC reset functionality for m.2 / mPCIe / z2 upon initialization
o Resolved issue with incorrect number of taps reported and used for custom FIR
coefficients for Sidekiq mPCIe / m.2 / Z2

o Significant performance improvement with Sidekiq Z2 RX stop streaming
o Significant reduction in Sidekiq Z2 FPGA resource utilization
o Fixed incorrect RF port mapping for Sidekiq X2 Rx A1 / Rx B1

10.2.30 v4.6.0 - 06/15/2018
New Features for Libsidekiq/FPGA

o Increased maximum available Sidekiq cards supported to 32
o Sidekiq Z2 rev B hardware supported
o Added RF port configuration and querying ability
o Added Sidekiq m.2 USB streaming capability
o Added support for a list of receive handles to be provided to start receive
streaming

o Added new transmit mode to transmit a packet in timestamp mode if the
timestamp is late.

o Added Windows 10 support

(continues on next page)

10.2. Release History 141

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o Added ability for user to enable or disable TX quadrature calibration.
o Added new RX streaming mode to allow for shorter packets to be transferred,
thus reducing the transport latency.

Bug Fixes for Libsidekiq/FPGA

o Unaligned memory access resolved in ARM platforms
o Resolved issues with custom FIR coefficients overwritten during TX retune
o Updated numerous test applications to allow for selection of Sidekiq based on serial
number in addition to card number.

o Improved detection of the Dropkiq low frequency extender card for use with
Sidekiq mPCIe.

o Resolved invalid reporting of a late timestamp in the case where transmit
FIFO was empty.

o Improved TX quadrature error calibration for Sidekiq X2.

10.2.31 v4.4.0 - 11/02/2017
New Features for Libsidekiq/FPGA

o Windows 7 support now available, including signed device driver
o Additional sample rates supported for Sidekiq X2
o Preliminary Sidekiq Z2 support
o Support for RX attenuation mode configuration for Sidekiq X2. New APIs added
to support this are: skiq_write_rx_attenuation(), skiq_read_rx_attenuation(),
skiq_read_rx_attenuation_mode(), skiq_write_rx_attenuation_mode()

o The ability to query various parameters of the radio is now available via
skiq_read_parameters()

o Management of FPGA versions now support semantic versioning and can be queried
via skiq_read_fpga_semantic_version()

o RX calibration for Sidekiq mPCIe and m.2 are maintained within the flash part
of the card. To determine if stored calibration data is present, the
skiq_read_rx_cal_data_present() API is available, otherwise default
calibration data is used

o Automatic detection of transport layer now supported. The skiq_init() API can
take the skiq_xport_type_auto and the transport is automatically detected and
selected

Bug Fixes for Libsidekiq/FPGA

o Erratic system timestamps fixed in FPGA v3.8.0
o Fixed transmit PPS synchronization error
o Improved oscillator drift of Sidekiq X2
o Improved initialization time of Sidekiq X2
o Resolved issues with transmitter filter configuration for Sidekiq mPCIe and m.2
o Resolved incorrect setting of TX attenuation for Sidekiq X2

10.2.32 v4.2.1 - 11/02/2017
New Features for Libsidekiq/FPGA

No new features from v4.2.0 have been added.

(continues on next page)

10.2. Release History 142

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

Bug Fixes for Libsidekiq/FPGA

o RX FIR filter coefficients below sample rates of 13.3 Msps have been
updated. In v4.2.0, the RX FIR coefficients resulted in a 6dB increase when
operating at sample rates lower than 13.3 Msps vs higher than 13.3 Msps.

o The minimum and maximum variable names of skiq_read_rx_gain_index_range()
have been modified to match actual implementation.

10.2.33 v4.2.0 - 09/29/2017
New Features for Libsidekiq/FPGA

The following functions were added for v4.2.0. For full details of the
new functions, refer to sidekiq_api.h.

o skiq_read_tx_tone_freq()
- allows for the frequency of the TX test tone to be determined

o skiq_is_accel_supported()
- determines if the accelerometer is supported based on the Sidekiq type detected

o skiq_write_accel_reg()
- provides generic write register access to access to the accelerometer

o skiq_read_accel_reg()
- provides generic read register access to access to the accelerometer

o skiq_read_part_info()
- provides part information regarding Sidekiq detected

o skiq_read_max_sample_rate()
- allows for the maximum supported sample rate for the card to be determined

o skiq_read_min_sample_rate()
- allows for the minimum supported sample rate for the card to be determined

o skiq_read_rx_iq_resolution()
- allows for the RX IQ resolution for the card to be determined

o skiq_read_tx_iq_resolution()
- allows for the TX IQ resolution for the card to be determined

o skiq_read_rx_filters_avail()
- provides an array of RX filters available on the Sidekiq card

o skiq_read_tx_filters_avail()
- provides an array of TX filters available on the Sidekiq card

o skiq_read_filter_range()
- provides the minimum and maximum frequency range of the filter specified

o skiq_read_usb_enumeration_delay()
- returns the delay of the Sidekiq USB enumeration on the USB bus

o skiq_read_sys_timestamp_freq()
- returns the frequency at which the system timestamp increments for the

Sidekiq card
o skiq_read_ext_ref_clock_freq()
- returns the frequency at which the external reference clock operates

Bug Fixes for Libsidekiq/FPGA

o Race condition causing rare lockup in transmit shutdown resolved

o Sidekiq M.2 FPGA flash fallback image now supported (refer to section 14.3)
o Sidekiq X2 hardware revision B support added
o Sidekiq mPCIe / M.2 transmit quadrature / DC offset calibration improved

(continues on next page)

10.2. Release History 143

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o Sidekiq mPCIe / M.2 FIR filter coefficients updated for sample rates below 13.3MHz
o Sidekiq mPCIe / M.2 phase inversion of A2 resolved

10.2.34 v4.0.1 - 07/18/2017
New Features for Libsidekiq/FPGA

No functions were added for v4.0.1

Bug Fixes for Libsidekiq/FPGA

o Fix USB probing issuing that ended up limiting USB to 3 instances instead of 4

10.2.35 v4.0.0 - 05/15/2017
New Features for Libsidekiq/FPGA

The following functions were added for v4.0.0. For full details of the
new functions, refer to sidekiq_api.h.

o skiq_get_cards()
- provides a list of cards based on the transport type specified

o skiq_init_by_serial_str()
- identical to skiq_init() except serial numbers can be provided instead

of card numbers
o skiq_is_xport_avail()
- determines if a transport type is available for the specified card

o skiq_is_card_avail()
- determines if the card is available for use

o skiq_verify_fpga_config_from_flash()
- verifies the contents of the FPGA bitstream specified matches the

FPGA bitstream stored in flash on the Sidekiq
o skiq_read_rx_cal_offset()
- provides calibration offset

o skiq_read_rx_cal_offset_by_LO_freq()
- provides calibration offset based on frequency specified

o skiq_read_rx_cal_offset_by_gain_index()
- provides calibration offset based on gain specified

o skiq_read_rx_cal_offset_by_LO_freq_and_gain_index()
- provides calibration offset based on gain and frequency specified

o skiq_read_last_tx_timestamp()
- provides last timestamp seen by the FPGA when transmitting

o skiq_set_tx_block_timestamp(), skiq_tx_get_block_timestamp()
- convenience functions to access timestamps in TX block

o skiq_tx_block_allocate_by_bytes(), skiq_tx_block_allocate(), skiq_tx_block_free()
- convenience functions to allocate / free skiq_tx_block_t

o SKIQ_TX_BLOCK_INITIALIZER_BY_BYTES(), SKIQ_TX_BLOCK_INITIALIZER_BY_WORDS(),
SKIQ_TX_BLOCK_INITIALIZER()
- convenience MACROs to statically allocate skiq_tx_block_t

o SKIQ_RX_BLOCK_INITIALIZER_BY_BYTES(), SKIQ_RX_BLOCK_INITIALIZER_BY_WORDS(),
SKIQ_RX_BLOCK_INITIALIZER()
- convenience MACROs to statically allocate skiq_rx_block_t

(continues on next page)

10.2. Release History 144

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

Bug Fixes for Libsidekiq/FPGA

o Critical race condition causing EEPROM corruption in applications that use
multiple cards has been resolved

o Critical race condition in reconfiguring the FPGA on certain host systems resolved.
o Flash access speeds greatly improved
o Parallel reconfiguring of FPGA resolved
o Card access by multiple applications protection added
o System update fully supports systems with multiple cards
o USB RX streaming for m.2 now supported

Libsidekiq APIs Modified

o skiq_init()
Details:

The function has been updated to support the transport type and
initialization level selected as separate parameters of the
initialization. Additionally, if a USB interface is available, USB only
features are automatically available regardless of the transport type
specified (ex. programming the FPGA from file).

Migration Path:
Examples of how to transition from the skiq_init() function of v3.X.Y to
v4.0.0 are shown below.

o skiq_init(skiq_pcie_init_level_1, skiq_usb_init_level_0, p_cards, num_cards) =>
skiq_init(skiq_xport_type_pcie, skiq_xport_init_level_basic, p_cards, num_cards)

o skiq_init(skiq_pcie_init_level_2, skiq_usb_init_level_0, p_cards, num_cards) =>
skiq_init(skiq_xport_type_pcie, skiq_xport_init_level_full, p_cards, num_cards)

o skiq_init(skiq_pcie_init_level_2, skiq_usb_init_level_1, p_cards, num_cards) =>
skiq_init(skiq_xport_type_pcie, skiq_xport_init_level_full, p_cards, num_cards)

o skiq_init(skiq_pcie_init_level_0, skiq_usb_init_level_1, p_cards, num_cards) =>
skiq_init(skiq_xport_type_usb, skiq_xport_init_level_basic, p_cards, num_cards)

o skiq_init(skiq_pcie_init_level_0, skiq_usb_init_level_2, p_cards, num_cards) =>
skiq_init(skiq_xport_type_usb, skiq_xport_init_level_full, p_cards, num_cards)

o skiq_register_tx_complete_callback()
Details:

The function has been updated to use the new skiq_tx_callback_t type. This
allows the transmit complete callback function to be provided both the
transmitted packet (skiq_tx_block_t) as well
as user data specified during the transmit call.

Migration Path:
Examples of how to transition from the
skiq_register_tx_complete_callback() function of v3.X.Y to v4.0.0 is shown
below.

o skiq_register_tx_complete_callback(card, &tx_complete)
o void tx_complete(int32_t status, uint32_t *p_data) =>

void tx_complete(int32_t status, skiq_tx_block_t *p_data , void *p_user)

(continues on next page)

10.2. Release History 145

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

o skiq_read_libsidekiq_version()
Details:
A new parameter, p_label has been added.

Migration Path:
Examples of how to transition from the skiq_read_libsidekiq_version()
function of v3.X.Y to v4.0.0 is shown below.

o skiq_read_libsidekiq_version(&major, &minor, &patch) =>
skiq_read_libsidekiq_version(&major, &minor, &patch, & label);

o skiq_register_critical_error_callback()
Details:

The critical error callback function that can be registered has been
updated to also allow custom user data to be referenced.

Migration Path:
Examples of how to transition from the
skiq_register_critical_error_callback() function of v3.X.Y to v4.0.0 is
shown below.

o void skiq_register_critical_error_callback(void (*critical_handler)(int32_t status)) =>
void skiq_register_critical_error_callback(void (*critical_handler)(int32_t status, void* p_user_data),␣

→˓void* p_user_data);

o skiq_transmit()
Details:

The transmit function has been updated to use the newly added
skiq_tx_block_t type. Additionally, custom private data can be provided on
a per packet basis. This private data is then provided to the registered
TX complete callback function when running in asynchronous mode.

Migration Path:
Examples of how to transition from the skiq_transmit() function of v3.X.Y
to v4.0.0 is shown below.

o int32_t skiq_transmit(uint8_t card, skiq_tx_hdl_t hdl, int32_t *p_samples); =>
int32_t skiq_transmit(uint8_t card, skiq_tx_hdl_t hdl, skiq_tx_block_t *p_block , void *p_user);

o skiq_receive()
Details:

The receive function has been updated to use the newly added skiq_rx_block_t type.

Migration Path:
Examples of how to transition from the skiq_receive() function of v3.X.Y
to v4.0.0 is shown below.

o skiq_rx_status_t skiq_receive(uint8_t card, skiq_rx_hdl_t* p_hdl, uint8_t** pp_data, uint32_t* p_data_
→˓len); =>

skiq_rx_status_t skiq_receive(uint8_t card, skiq_rx_hdl_t* p_hdl, skiq_rx_block_t** pp_block, uint32_t*␣
→˓p_data_len);

Libsidekiq Functions Deprecated (v3.X.Y => v4.0.0)

o skiq_probe()

(continues on next page)

10.2. Release History 146

Epiq Solutions Proprietary Sidekiq Software DevelopmentManual, Release 4.17.x

(continued from previous page)

Details:
This function is no longer needed as all necessary hardware probing handles
automatically. Hotplugging hardware is not currently supported. As a result
As a result, all Sidekiq hardware must be present prior to running any Sidekiq
application.

Migration Path:
This function is no longer needed and does not have a replacement.

o skiq_probe_xport()
Details:

This function is no longer needed as all necessary hardware probing handles
automatically. Hotplugging hardware is not currently supported. As a result
all Sidekiq hardware must be present prior to running any Sidekiq application.

Migration Path:
This function is no longer needed and does not have a replacement.

o skiq_get_avail_cards()
Details:

This function has been replaced by skiq_get_cards(), which returns a list of
all card numbers detected on the specified transport interface

Migration Path:
Replace skiq_get_avail_cards() with skiq_get_cards().

o skiq_get_serial_num()
Details:

This function was only supported with miniPCIe serial number formats.
Migration Path:

Replace skiq_get_serial_num() with skiq_read_serial_string().

o skiq_get_card_num()
Details:

This function was only supported with miniPCIe serial number formats.
Migration Path:

Replace skiq_get_card_num() with skiq_get_card_from_serial_string().

o skiq_read_serial_num()
Details:

This function was only supported with miniPCIe serial number formats.
Migration Path:

Replace skiq_read_serial_num() with skiq_read_serial_string().

o skiq_init_xport()
Details:

This function is no longer needed. Initialization of a custom transport is
supported by specifying skiq_xport_type_custom in skiq_init().

Migration Path:
Replace skiq_init_xport() with skiq_init() and specify skiq_xport_type_custom.

o skiq_read_rfic_temp()
Details:

The RF IC temperature correlates to the Sidekiq board temperature
(available with skiq_read_temp()). Thus, the function was removed
as it did not provide any additional temperature information.

Migration Path:
This function is no longer needed and does not have a replacement.

10.2. Release History 147

	Disclaimer
	Document History
	Document Revision History

	References
	Links

	Overview
	Introduction
	Legal Considerations
	Proper Care and Handling
	Terms and Definitions
	Overview

	Sidekiq mPCIe Block Diagram
	Sidekiq m.2 Block Diagram
	Sidekiq X2 Block Diagram
	Sidekiq Z2 Block Diagram
	Sidekiq X4 Block Diagram
	Sidekiq Stretch (M.2-2280) Block Diagram
	Matchstiq Z3u Block Diagram
	Sidekiq NV100 Block Diagram

	Developing with libsidekiq
	Installation Procedure
	Software Development Flow
	Tools/Libraries Needed for Linux Application Development
	GCC Toolchain
	libsidekiq Userspace Library
	Source Code Editor
	Re-Building the Sidekiq Test Applications

	Developing Custom Applications with libsidekiq
	Structure of an Application using libsidekiq
	Proper Header File Inclusion
	Initializing libsidekiq
	Configuring an Interface using a Handle
	Frequency Hopping
	Operation Modes
	RF Port Configuration
	I/Q Ordering Mode
	Packed Mode (Sidekiq mPCIe, m.2, and Stretch / m.2-2280 only)
	Starting an Rx Interface
	Configuring a Tx Interface
	Starting the Tx Interface
	Simultaneous use of Tx and Rx Interfaces
	Stopping and Releasing an Interface
	Pin Control enable of RFIC signal paths (Sidekiq X4 only)
	Clock and Time Management Resources
	Timestamp Details
	Automatic Calibration
	Receive Stream Mode
	Hotplug
	Exiting
	Critical Errors

	Using Libsidekiq Remotely
	Prerequisites
	Setup
	Example Usage
	Detailed Network and Port Use
	Limited Capabilities

	Configuring Sample Rate / Channel Bandwidth
	API Ordering Dependency
	Configuring Sample Rate / Channel Bandwidth on Multiple Handles
	Sidekiq mPCIe, m.2, Stretch (m.2-2280), Z2, and Matchstiq Z3u only
	Sidekiq X2 and X4
	Sidekiq NV100

	Example X4 Use Cases: Rx
	Receive: single channel, up to 200MHz IBW
	Receive: single channel, up to 400MHz IBW
	Receive: Two phase coherent channels up to 200MHz IBW
	Receive: Two independently tunable channels different sample rate* up to 200MHz IBW

	Example NV100 Use Cases: Rx
	Receive: single channel, up to 50MHz IBW
	Receive: two phase coherent channels, up to 50MHz IBW
	Receive: two independently tunable channels, same sample rate, up to 50MHz IBW

	Sidekiq API
	FPGA user_app examples
	Transmitting samples from FPGA memory

	Hosts & Platforms
	Windows Sidekiq Development
	Install the SDK
	Sidekiq Device Configuration
	Windows Development Tools

	Developing for Alternative Host Platforms
	Supported Architectures
	Building Test Applications
	Additional Dependencies
	Setting up Sidekiq on New Host PC
	Developing for the Matchstiq S1x and S2x
	Developing for the NVIDIA Jetson TX1/TX2/Xavier
	Developing for the Sidekiq Z2
	Developing for the Matchstiq Z3u

	Assessing Throughput Performance
	Receive Performance
	Receive Performance Example
	Transmit Performance
	Transceive

	DKMS
	What is DKMS?
	What systems does DKMS work on?
	How is Epiq using DKMS?
	Are there any licensing requirements for using DKMS support?
	How are the Epiq DKMS modules installed?
	How to check the status of the Epiq DKMS modules?
	How are the Epiq DKMS modules removed?
	How are the Epiq DKMS modules loaded?

	Advanced Topics
	Adjusting the DMA Ring Buffer Packet Count (Linux only)
	Configuring Sidekiq Drivers Using a Driver Configuration File

	Hardware Information
	Detailed RF Port Configuration
	FPGA Programming
	Transport Layer Requirements
	Updating the FPGA
	FPGA Images in Flash *

	Power consumption states (mPCIe, m.2)
	Sidekiq X4 - Methods of LO frequency tuning
	hop_on_timestamp (FPGA triggered)
	hop_immediate (software triggered)
	Standard tune
	Comparisons between tuning modes

	Errata
	Software Errata
	Errata SW1
	Errata SW2
	Errata SW3
	Errata SW4
	Errata SW5

	Troubleshooting
	Troubleshooting a Sidekiq Installed in a New Host *
	Observing The LED State (Sidekiq mPCIe and Sidekiq m.2 only)
	Verifying the Hardware Interfaces Detected in Linux
	Checking Kernel and Drivers

	Frequently Asked Questions

	Release Information
	Known Issues / Limitations
	PCIe only functions
	USB only functions
	Limited Capabilities

	Release History
	v4.17.2 - 28-Feb-2022
	v4.17.1 - 11-Feb-2022
	v4.17.0 - 15-Oct-2021
	v4.16.2 - 9-Sept-2021
	v4.16.1 - 9-Jun-2021
	v4.16.0 - 1-Jun-2021
	v4.15.2 - 31-Mar-2021
	v4.15.1 - 3-Mar-2021
	v4.15.0 - 3-Feb-2021
	v4.14.2 - 12/09/2020
	v4.14.1 - 10/30/2020
	v4.14.0 - 10/16/2020
	v4.13.1 - 09/10/2020
	v4.13.0 - 06/30/2020
	v4.12.2 - 04/06/2020
	v4.12.1 - 02/21/2020
	v4.12.0 - 02/10/2020
	v4.11.1 - 11/22/2019
	v4.11.0 - 10/17/2019
	v4.10.1 - 08/16/2019
	v4.10.0 - 07/30/2019
	v4.9.5 - 06/26/2019
	v4.9.4 - 05/03/2019
	v4.9.3 - 03/19/2019
	v4.9.2 - 03/08/2019
	v4.9.1 - 02/26/2019
	v4.9.0 - 02/06/2019
	v4.7.1 - 10/15/2018
	v4.7.0 - 09/24/2018
	v4.6.0 - 06/15/2018
	v4.4.0 - 11/02/2017
	v4.2.1 - 11/02/2017
	v4.2.0 - 09/29/2017
	v4.0.1 - 07/18/2017
	v4.0.0 - 05/15/2017

