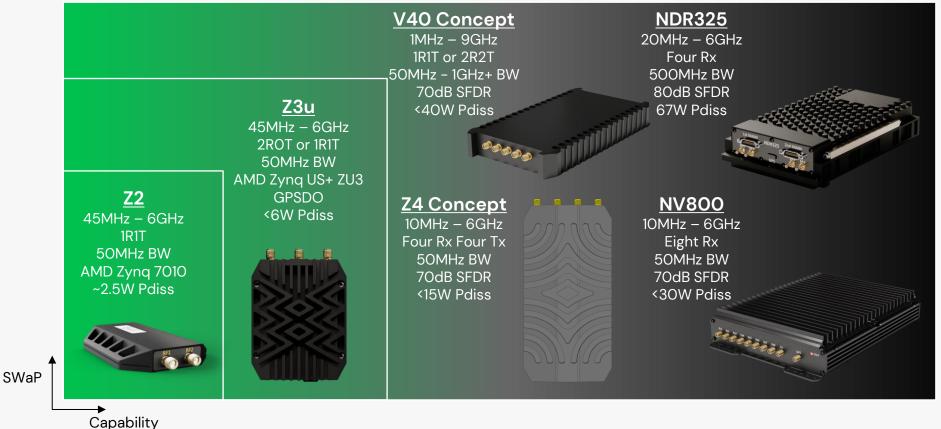
EPIQ Sidekiq NV800

Space-Based Missions

Open Architecture

Small Form Factor

High Performance


Spectrum Dominance

Copyright © 2024. Epiq Solutions | Epiq Proprietary

Low SWaP SDR Platform Products

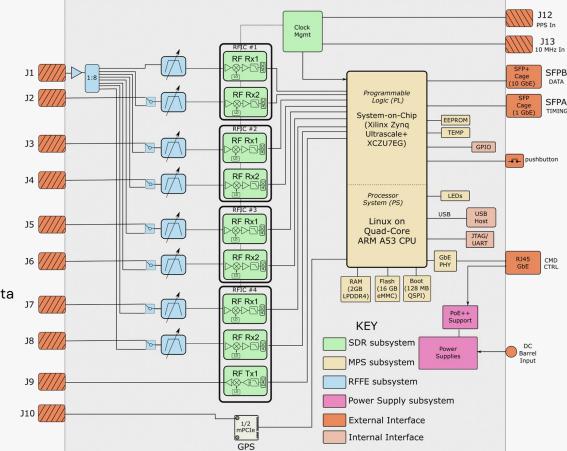
Scalable SWaP vs Capability

Copyright © 2024. Epiq Solutions | Epiq Proprietary

Sidekiq NV800 SDR – Funded by US DoD

Standalone SDR Platform

- Eight RF Receivers in a Single SDR Platform
- 10MHz 6GHz Tuning Range
 - Potential Extension to 18GHz on One Channel
- Phase Coherent or Independently Tuned Receivers
- 50MHz Bandwidth per Receive Channel, 16b ADCs
- 10GbE SFP+ Port for Streaming VITA 49
- 1GbE for Command & Control
- Integrated Support for WhiteRabbit (IEEE 1588–2019)
 - Enables <1ns Sync Between Remote Sensors
- Integrated 10MHz and PPS Inputs
- <30W Typical Power, Passively Cooled Housing
- Dimensions 9.92" x 7.24" x 2.0"
 - 25.2 x 18.4 x 5.1 cm
 - 144 inches³, 2,365 cm³



CEDIO

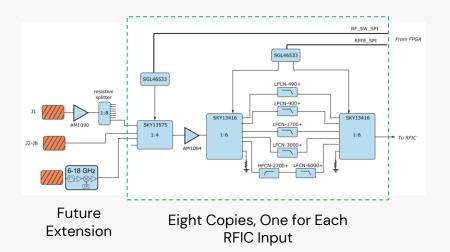
Detailed NV800 Block Diagram

External Interfaces

- 6–18GHz Extension: Currently Unpopulated
- J1: Can Feed All RFICs or Just RFIC #1 Rx1
- J2–J8: RFIC Rx Inputs or Unused
- J9: Single Tx Output
- J10: Connected to ½ MiniPCle Connector
 - Populated with ½ Size GPS/GNSS Rx
- J12: PPS Input
- J13: 10MHz Input
- SFPB: 10GbE for IQ Data
- SFPA: WhiteRabbit or Additional 10GbE for IQ Data
- GPIO: 8 Externally Exposed GPIO Signals
- RJ45: 1GbE for Command & Control
 - Can Also Source POE++ for Power
- DC Barrel: Power Input if POE++ Not Used

NV800 RF Front End

Two Input Modes

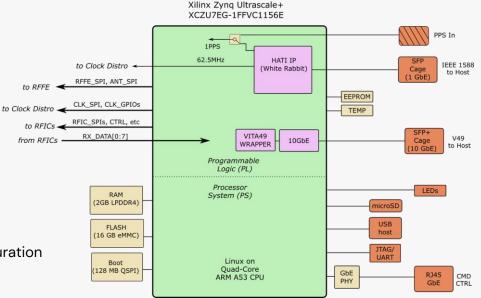

- Single Antenna Mode
 - J1 Connects to Antenna
 - Resistive Splitter Sends Signal to Every RFIC Rx Input
 - RFICs Can Still be Tuned Independently or Coherently
- Multiple Antenna Mode
 - J1 to J8 Each Connect or Antennas
 - Each Antenna Sends Signal to One RFIC Rx Input
 - RFICs Can Still be Tuned Independently or Coherently

On Card Signal-Conditioning

- Amplification, AM1090 and AM1084
- Filtering, Pre-Selection Bank
- Future Option to Have 18GHz Input to One RFIC
 - Block Conversion, Amplification, Filtering

Target RF Specs

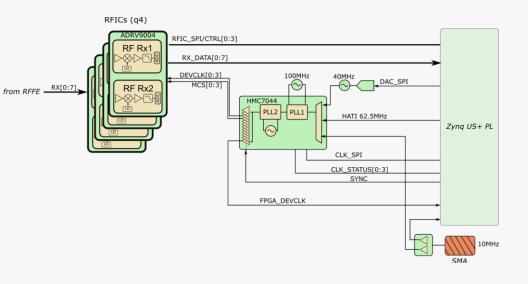
• Gain = 20dB, NF = 7dB, IIP3 = +5dBm


CEPIQ

NV800 FPGA Subsystem

Two FPGA Modes

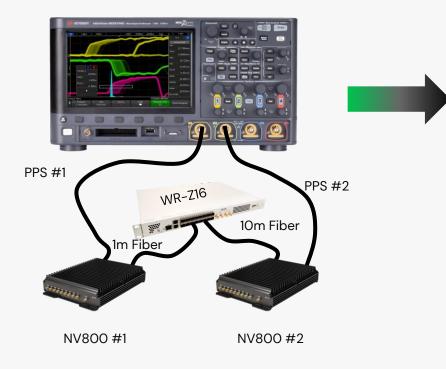
- Epiq Application VITA 49 IQ Streaming
 - Epiq Provides FPGA Binary to Configure System
 - User Can Set Each RFIC IQ Streams (8x)
 - Sample Rate
 - Packet Size (Up to 9kb Jumbo Frames)
 - VITA 49 Stream IDs (V49)
 - Source and Destination
 - MAC (with Broadcast Ability)
 - IP Addresses (IP)
 - Port (UDP)
 - Full Rate VITA 49 Data Streams on 10GbE up to Link Saturation
- User Application
 - User Must Provide FPGA Binary
 - Epiq will Provide FPGA Source as Reference
 - User Registers in PL
 - User App Runs in PS to Configure PL
 - Reduced or Full Rate IQ Data Sta Streams on 10GbE
 - Still Uses VITA 49 Packets

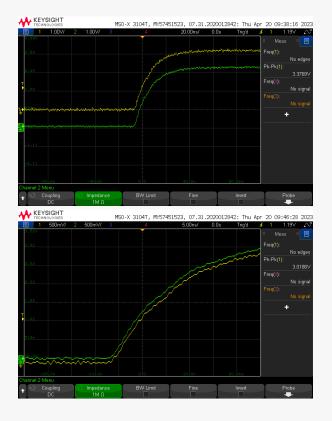


Three Clocking Modes

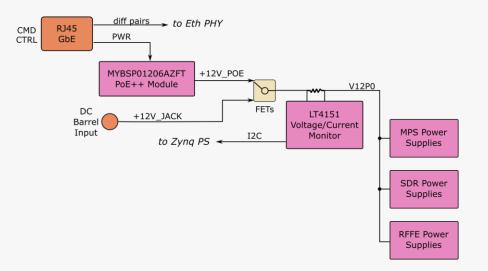
- External 10MHz
 - User Provides 10MHz Clock on J13
- WhiteRabbit
 - WhiteRabbit (IEEE 1588-2019) Signals of SFPA
 - FPGA will Product HATI 62.5MHz Clock
- On Board 40MHz Oscillator
- Warpable Thru SPI Controlled DAC

All Three Clock Sources Input to HMC7044


- 100MHz Reference Clock Always Delivered to RFICs
 - Potential Future Upgrade to 200MHz
- RFIC can Generate Internal Clocks
- Arbitrary IQ Rates are Supported from Single Reference Clock



Early WhiteRabbit Results: <1ns PPS Alignment


NV800 Power Distribution

Two Power Modes

- POE++ is Primary Mode
- Power Delivered on 1GbE
- Max Power Handling is 40W
- DC Barrel Input is Secondary Mode
- 12V Input

Total Power Estimated at <28W in VITA 49 Mode

Device	Power	Device	Power
FPGA	6.5W	DDR	1.2W
RFICs	7.6W	Power Supply	4.OW
HMC7044	1.5W	Ethernet PHY	0.5W
RF Front End	4.OW	Misc	0.7W
SFP+	2.OW	Total	28.OW

NV800 Software Control & Operating Modes

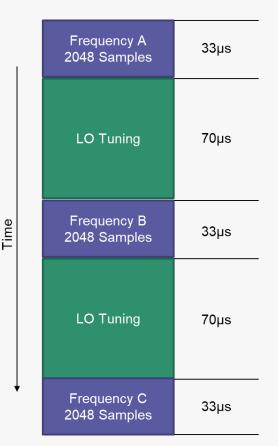
RFIC Software Control

- ERFS: <u>E</u>mbedded <u>RF</u> <u>S</u>erver
 - Abstracts RFIC Control
 - Receivers are Numbers 1 Through 8
 - Receivers can be Tasked with Stare or Sweep
 - Gain Control Unique to Each Sweep Step
- Multiple Operating Modes Available
 - Sweep & Stare Modes on Each Rx
 - Independent Sweep on Each Rx
 - Coherent Sweep on Each Rx
 - Independent Fixed Frequency on Each Rx
 - Coherent Fixed Frequency on Each Rx
 - Simultaneous Sweep & Stare Across the Rx Channels
 - Rx 1-4 as Coherent Block and Rx 5-8 as Coherent Block

RFIC 1 (61.44MSPS)		RFIC 2 (61.44MSPS)		RFIC 3 (61.44MSPS)		RFIC 4 (61.44MSPS)		
Antenna 1	Antenna 2	Antenna 3	Antenna 4	Antenna 5	Antenna 6	Antenna 7	Antenna 8	
Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	
Frequency Sweep	Frequency Sweep	Frequency Sweep	Frequency Sweep	Frequency Sweep	Frequency Sweep	Frequency Sweep	Frequency Sweep	
Frequency & Phase Coherent Mode								

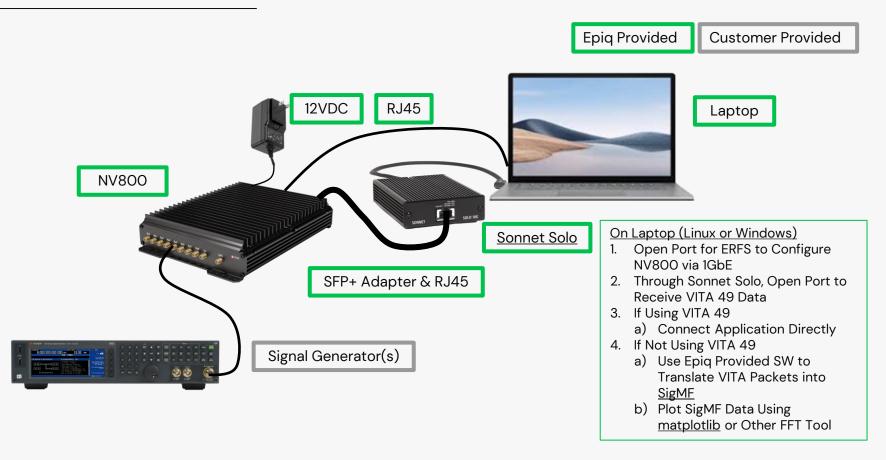
NV800 Frequency Hopping

LO Tune Time – Currently 70µs


- Total Time Required to Change LO Frequency
- IQ Data is Blanked During this Time

Dwell Time – Configuration Dependent

- Total Time a Receiver will Stay on a Frequency
- Must Be a Multiple of the VITA 49 Sample Count
- Example, if VITA 49 Sample Count = 2048
 - @ 61.44MSPS IQ Rate, Minimum Dwell = 33µs


Fast Hopping Example

- IQ Rate = 61.44MSPS, BW = 50MHz
- VITA 49 Sample Count = 2048, Minimum Dwell is 33µs
- Sweep from 30MHz→6GHz
 - Total of 120 Steps at 50MHz Step Size
- Full 6GHz Sweep Takes 12.4ms
 - <u>Approximately ~481GHz/sec Coverage</u>

NV800 Demo & Evaluation

Thank You

Wyatt Taylor wyatt.taylor@epiqsolutions.com