
Sidekiq FPGA Development Manual

Version 3.15.1

Disclaimer

Epiq Solutions is disclosing this document (“Documentation”) as a general guideline for
development. Epiq Solutions expressly disclaims any liability arising out of your use of the
Documentation. Epiq Solutions reserves the right, at its sole discretion, to change the
Documentation without notice at any time. Epiq Solutions assumes no obligation to correct
any errors contained in the Documentation, or to advise you of any corrections or updates.
Epiq Solutions expressly disclaims any liability in connection with technical support or
assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS IS” WITH NO WARRANTY OF ANY
KIND. EPIQ SOLUTIONS MAKES NO OTHER WARRANTIES, WHETHER EXPRESSED,
IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL EPIQ SOLUTIONS
BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR
INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING
FROM YOUR USE OF THE DOCUMENTATION.

All material in this document is Copyrighted by Epiq Solutions 2021. All trademarks are
property of their respective owners.

2 Sidekiq FPGA Development Manual

Revision History

Date Revision Description

06/06/2014 1.0 Initial release

10/09/2014 1.3 Updated user_app and timestamp_block info

01/08/2015 1.5 PPS features and user metadata added

9/15/2015 2.0 Packed mode added, major user_app overhaul, processing path added
to TX path, fixed glitches related to rapid retuning, numerous bug fixes.
user_app top level changed – will break compatibility with previous 1.*
versions.

5/9/2016 3.0 Bug fixes, register changes break compatibility – must use 3.0 SDK or
newer with this PDK

8/22/2016 3.1 Dropkiq and M.2 support added

3.2 Internal unreleased build

1/6/2017 3.3 USB initial release, configurable Tx FIFOS (M.2 only)

3.4 Internal release

5/16/2017 3.5 M.2 improvements:
Optimization improvements to reduce BRAM usage
Rx/Tx build configurability
XADC access
M.2 USB transport layer support

4/13/2018 3.9 Minor updates and improvements to documentation, including correction
of USB and M.2 build script names

01/04/2019 3.11.0 M.2 USB, fix lna enable and tx enable pins. All, add MANUAL_TRIGGER
capabilities. M.2 USB, corrected USB clock period constraint. All USB,
Corrected usb bus high impedance issue so that Tx works properly.

03/01/2019 3.11.2 Fix M.2 Dual Tx phase coherency. Fix M.2 and mPCIe reg_tx_last_ts bug.

04/25/2019 3.12.0 Fix PCIe Tx when packet size is larger than FIFO size. Add frequency
hopping control logic. Add iq swap mode.

09/24/2019 3.12.1 Add support for sidekiq M.2 Stretch

01/13/2020 3.13.0 MPCIe: Fix dropkiq spi done bug, up the speed on the dropkiq i2c.
M.2, M.2 USB, and M.2 Stretch: Add support for User App GPIO control
and user app RFIC SPI interface, Add user_pdk_config.v parameter file,
Add WBSTAR 100 ms delay when reconfiguring the FPGA via ICAPE.
MPCIe USB and M.2 USB, Double Rx FIFO size.
M.2 Stretch: Switch PPS default source to be from the GPS PPS.
All: Fix packed_mode bug in which drops (fifo_full) were in the middle of
packets
M.2, M.2 USB: Upgrade to Vivado 2018.3.

Sidekiq FPGA Development Manual 3

06/05/2020 3.13.1 M.2 Stretch: Add temp valid bits to the gpsdo temperature read register.

All: Change packet header format to v1.

08/02/2020 3.14.0 All: Fix dual Tx underrun reporting bug.

01/14/2021 3.14.1 M.2 and M.2 Stretch: Fix FIFO full write bug which resulted in the Rx
header and sample data to be scrambled in certain circumstances. Fix for
starting/stopping streaming on a 1PPS edge.

M.2 Stretch: Add GPSDO functionality.

04/12/2021 3.15.1 M.2, M.2 Stretch: Fix Tx Timestamp dropped packets after late bug.

M.2 Stretch: Add GPS_CONTROL_MASK read only register.

M.2 Stretch: Add gps_pps mux control.

M.2, M.2 USB, and M.2 Stretch: Fix missing timestamp reset related to
clock crossing synchronization on the register interface.

M.2, M.2 USB, and M.2 Stretch: Add register reset capability.

M.2, M.2 USB, and M.2 Stretch: Add BASELINE_VCS_STATUS register.

M.2, M.2 Stretch: Add frc_sel_for_tx to be used in Tx timestamp mode.

4 Sidekiq FPGA Development Manual

Table of Contents
1 About this Document..8
2 Legal Considerations...8
3 Proper Care and Handling...8
4 Introduction.. 9
5 References.. 10
6 Terms and Definitions..10
7 FPGA Reference Design..12

7.1 Overview..12
7.2 Top Level..13
7.3 user_app..13

7.3.1 user_app Signals..14
7.3.2 Rx Path Inputs to user_app..15
7.3.3 Outputs from user_app...16
7.3.4 user_app Tx Interface...17
7.3.5 user_reg_if..19

7.4 reg_if / user_reg_if...19
7.5 pcie_block..20
7.6 timestamp_block..21
7.7 gpio_tristate..21

8 Building Sidekiq mPCIe and Sidekiq M.2...22
8.1 Building a user_app for mPCIe and M.2...22

8.1.1 Reference Design for mPCIe..22
8.1.2 Reference Design for M.2...22
8.1.3 Custom user_apps for mPCIe...23
8.1.4 Custom user_apps for M.2..23

8.2 Building the project and bitstream for mPCIe and M.2...23
8.2.1 Linux...24

8.2.1.1 Sidekiq mPCIe (and USB)...24
8.2.1.2 Sidekiq M.2 (and USB)..25

8.2.2 Windows...25
8.2.2.1 Sidekiq mPCIe (and USB)...25
8.2.2.2 Sidekiq M.2 (and USB)..25

9 Programming the Sidekiq mPCie and Sidekiq M.2 Flash...26
10 Building Sidekiq M.2 Stretch..27

10.1 Terminology Used for M.2 Stretch..27
10.2 Building a user_app for M.2 Stretch...27

10.2.1 Reference Design for M.2 Stretch...28
10.2.2 Custom user_apps for M.2 Stretch...28

10.3 Building the project and bitstream for M.2 Stretch..28
10.4 Selecting the SM or RM (Or Both) Build Flow for M.2 Stretch..29

10.4.1 When to use the SM only build for M.2 Stretch...29
10.4.1.1 Building M.2 Stretch with the SM only build flow...29
10.4.1.2 Programming M.2 Stretch with the SM only build flow...30

10.4.2 When to use the RM build only for M.2 Stretch...30
10.4.2.1 Building M.2 Stretch with the RM build flow...31
10.4.2.2 Programming M.2 Stretch with the RM build flow only..32

10.4.3 When To Use A Combined SM and RM Build Flow For M.2 Stretch................................32

Sidekiq FPGA Development Manual 5

10.4.3.1 Building M.2 Stretch with the combined SM and RM build flow...............................32
10.4.3.2 Programming M.2 Stretch with the combined SM and RM build flow......................34

11 Testing the Bitstream...35
12 Using JTAG for Debug..36

6 Sidekiq FPGA Development Manual

Table of Figures
Figure 1: Sidekiq Simplified Block Diagram...13
Figure 2: User App Block Diagram...14
Figure 3: Sample Timing Diagram..16
Figure 4: Sample User App to PCIe Diagram...17
Figure 5: Sample Tx Timing...18

Sidekiq FPGA Development Manual 7

Table of Tables
Table 1: Terms and Definitions...11
Table 2: Rx Control Register..15
Table 3: User Registers..20
Table 4: Tx FIFO Customization...21

8 Sidekiq FPGA Development Manual

1 About this Document
This document provides the necessary details for developing FPGA applications on the SidekiqTM SDR
developed by Epiq Solutions [1]. It is provided with the purchase of a Sidekiq Platform Development
Kit.

2 Legal Considerations
The Sidekiq is distributed all over the world. Each country has its own laws governing the
reception and/or transmission of radio frequencies. The user of the Sidekiq and associated
software is solely responsible for insuring that it is used in a manner consistent with the laws
of the jurisdiction in which it is used. Many countries, including the United States, prohibit the
reception and/or transmission of certain frequency bands, or receiving certain transmissions
without proper authorization. Again, the user is solely responsible for the user's own actions.

3 Proper Care and Handling
The Sidekiq unit is fully tested by Epiq Solutions before shipment, and is guaranteed functional at the
time it is received by the customer, and ONLY AT THAT TIME. Improper use of the Sidekiq unit can
cause it to become non-functional. In particular, a list of actions that may cause damage to the
hardware include the following:

• Opening up the unit while it is powered up
• Handling the unit without proper static precautions (ESD protection) when the housing is

removed or opened up
• Connecting a transmitter to the RX port without proper attenuation – A max input of -10 dBm is

recommended.
• Executing custom software and/or an FPGA bitstream that was not developed according to

guidelines

The above list is not comprehensive, and experience with the appropriate measures for handling
electronic devices is required.

Sidekiq FPGA Development Manual 9

4 Introduction
The Sidekiq Platform Development Kit (PDK) provides the ability for users to create their own custom
applications. This can be accomplished by customizing software or the RTL code that configures the
FPGA. This manual gives an overview of the FPGA reference design, with the intention of
empowering the user to build upon the design to create custom applications.

Detailed information about the software environment, including how to create custom software
applications, can be found in a separate document, the Sidekiq Software Development Manual [2],
which can be downloaded from the Epiq Solutions support website [3]:

http://www.epiqsolutions.com/support

In addition, the details of the hardware itself and system design of the unit is outside the scope of this
document. For more details about the hardware, please download and review the Sidekiq Hardware
User's Manual [4]. It is strongly recommended that the user read this document thoroughly before
attempting to dive into FPGA development.

This manual is meant to concisely describe the FPGA reference design, but it is important for even an
experienced developer to spend time evaluating the actual design (i.e. RTL source code), perhaps
even while digesting the information presented here. The sections of the manual were intentionally
created to align with the basic hierarchy of the design, and the source code itself is commented and
will act as a supplement to the information provided here.

10 Sidekiq FPGA Development Manual

http://www.epiqsolutions.com/support

5 References

[1] Epiq Solutions Website
http://www.epiqsolutions.com

[2] Sidekiq Software Development Manual
http://www.epiqsolutions.com/support

[3] Epiq Solutions Support Website
http://www.epiqsolutions.com/support

[4] Sidekiq Hardware User's Manual
http://www.epiqsolutions.com/support

[5] Open Core Protocol International Partnership Website
http://www.ocpip.org

[6] OpenCores® I2C Controller Website
http://www.opencores.org/project,i2c

Sidekiq FPGA Development Manual 11

http://www.opencores.org/project,i2c
http://www.ocpip.org/
http://www.epiqsolutions.com/support/
http://www.epiqsolutions.com/support
http://www.epiqsolutions.com/support/
http://www.epiqsolutions.com/

6 Terms and Definitions

Term Definition

1PPS 1 Pulse Per Second

ADC Analog to Digital (A/D) converter

DAC Digital to Analog (D/A) converter

DSP Digital Signal Processing

EOF End-of-frame

EOP End-of-packet

FIFO First In First Out

FPGA Field Programmable Gate Array

FRC Free-running counter

GPS Global Positioning System

I/Q In-Phase / Quadrature Phase

I2C Inter-Integrated Circuit

IP Intellectual Property

LSB Least Significant Bits / Bytes

M.2 mSATA / mPCIe replacement card connector standard

MHz Megahertz

MSB Most Significant Bits / Bytes

PC Personal Computer

PDK Platform Development Kit

PR Partial Reconfiguration

RF Radio Frequency

RM Reconfigureable Module

Rx Receive

SDK Software Development Kit

SDR Software Defined Radio

SM Static Module

SOF Start-of-frame

SOP Start-of-packet

SPI Serial Peripheral Interface

Tx Transmit

VHDL VHSIC Hardware Description Language

Table 1: Terms and Definitions

12 Sidekiq FPGA Development Manual

7 FPGA Reference Design

7.1 Overview
The Sidekiq PDK provides a complete FPGA reference design that enables a user to quickly and
efficiently create custom applications targeting Sidekiq MiniPCIe with a Xilinx Spartan®-6 LX45T,
Sidekiq M.2 with a Xilinx Artix®-7 XC7A50T, or Sidkiq M.2 Stretch with a Xilinx Artix®-7 XC7A50T
FPGA. On Sidekiq MiniPCIe and Sidekiq M.2, both PCIe and USB data transport modes are
supported with separate FPGA reference designs.

The unmodified reference design provides a full FPGA implementation to flow raw Rx I/Q samples
from one of up to two ADC channels (Sidekiq variant dependent) to the host system processor and to
transmit from the host to the RF chip via the FPGA two channels (Sidekiq variant dependent) of Tx
data.

The PDK structure is created with the ease of the end-user in mind.

The Rx path transfers baseband I/Q samples which are received from an Analog Devices AD9361 RF
Transceiver. These samples pass through a DC offset correction block (which can be toggled on/off
by software), then into a processing block which allows the user to process, timestamp, and transfer
the samples via a FIFO interface to a PCIe subsystem. In the reference design, the user application
processing block can function as a simple pass-through which timestamps and drives the PCIe FIFO
with no changes to the samples. In this format, the 12-bit I and 12-bit Q components are sign-
extended to 16 bits, for a 32 bit wide data bus. The user application can also pack the data to fully
utilize the 32 bit bus, transferring four IQ pairs with every three 32-bit transfer. Note that this requires
software to decode the data into the proper 12-bit I and 12-bit Q components.

On the Tx side, I/Q samples are transferred from the host system to FPGA over PCIe directly into the
AD9361 DAC interface. Though the provided reference design does not include a Tx processing
block, the PDK user has the ability to process Tx if so desired. Similar to the receive side, transmit
data can be pushed down in 16-bit sign extended mode or packed mode. Non-IQ data of an arbitrary
format can also be sent down and processed in the FPGA for the user to process and transmit as
desired.

In Figure 1, orange design blocks are in NGC format (XCI format for M.2 and DCP format for M.2
Stretch) and cannot be changed (For M.2 Stretch, the only module that cannot be changed is the PCIe
Block. The Rx FIFO and Tx FIFO modules are now part of the RTL, but still should not be modified).
Red blocks are available in RTL, but should not be modified. Yellow blocks should not require
modification, but certain applications may necessitate changes. Green blocks are the intended targets
for user modification.

Sidekiq FPGA Development Manual 13

Figure 1: Sidekiq Simplified Block Diagram

7.2 Top Level
The Top Level block, sidekiq_top.v, sidekiq_usb_top.v, and sidekiq_m2_top.v are wrappers containing
the top-level RTL and all submodules. This section will serve to describe each block's functions and
use. Sections that have more significant impact on a PDK user will be discussed in greater detail.

The top level also contains the system GPIO pins, which can be mapped by a PDK user as desired.

7.3 user_app
The user app and register interface are Verilog files in which the majority of signal processing is
expected to be done. The user_app interface is designed to allow reuse through multiple Epiq SDR
platforms. user_reg_if is a submodule of user_app, which allows the user to maintain and customize
their own register space. In most cases, only the user_app.v and user_reg_if.v will need to be
modified to create custom FPGA images with advanced signal processing capabilities. See section
8.1.3 for more information on building custom user_apps for mPCIe and M.2 or section 10.2 for M.2
Stretch. The user_app structure is designed to allow for portable signal processing blocks between
multiple Epiq SDR platforms, including all Sidekiq variants. This allows end users to share user_app
modules between platforms allow upgrades to future platforms with minimal rework needed.

14 Sidekiq FPGA Development Manual

Figure 2: User App Block Diagram

7.3.1 user_app Signals

Several signals are provided to facilitate custom designs, some of which are not used in the stock
user_app.

host_clock is the host system clock, which runs at 62.5MHz on PCIe based hosts and 40MHz on USB
based hosts.

clk_tx_fb is a feedback clock used to drive the transmit path. It runs at twice the sample rate clock. It
is discussed more in the user_app transmit section.

aux_clk is an always-on, low accuracy clock which runs at 40 MHz on Sidekiq MiniPCIe and 24 MHz
on Sidekiq M.2. It provides a clock source even if the RF chip is not running or no external reference is
present.

ref_clk is an accurate 40MHz clock shared with the RF chip. If no external reference is present or if
the RF chip is turned off, this clock will not be present.

external_enable can be used as an external gating signal for transmit/receive. By default, it is wired at
the top level to allow software to start/stop transmitting on a PPS edge. If this functionality is not
needed but custom external gating is desired, this signal can be used.

timestamp_rst used to reset timestamps and free-running counters. Timestamps can also be reset by
software.

reg_rx_# is a per-channel control register that allows the user to monitor the state of the channel as
controlled by software. Values of user interest are:

Sidekiq FPGA Development Manual 15

Bit # (indexed from 0) Value : 0 Value : 1

1 IQ Data flowing Test mode: counter data flowing

2 Rx Reset (No data should flow) Rx Enabled

8 Tx continuous mode Tx timestamp mode

9 Tx FIFOs enabled Tx FIFOs reset

10 Passthrough mode Packed Mode

11 DC Offset disabled DC Offset enabled

Table 2: Rx Control Register

Bit 1 indicates if IQ data is flowing or if software has set test mode, which results in incrementing
counter data being placed on the I and Q data busses.

Bit 2 is especially important – when low, the user should not push data to PCIe and should reset any
data counters, as the PCIe bus is inactive.

Bit 5 in reg_rx_a1 indicates if the RFIC is in single or dual channel mode. In single channel mode,
clk_tx_fb is twice the sample rate of sample_clk. In dual channel mode, clk_tx_fb is four times the
sample rate of sample_clk. The value in reg_rx_a2 will always be 0.

Bit 8 indicates if the transmit path is sending data as soon as it arrives, or if it is waiting to transmit
data at a specific timestamp driven by software.

Bit 9 acts similar to bit 2, but on the transmit path. When asserted, the transmit FIFOs in the PCIe
block are in reset.

Bit 10 indicates if the channel is operating in passthrough mode, which sign-extends the 12 bit I and Q
data to 16 bits each. If high, packed mode is enabled, which keeps I and Q 12 bits, and packs in the
next portion of I Q data in. This requires software decoding when received by the host but allows for a
roughly 20% increase in throughput.

Bit 11 indicates if software has enabled or disabled the DC Offset block, which acts on the IQ data
before entering the user_app.

7.3.2 Rx Path Inputs to user_app

I/Q samples, valid signals, and clocks are routed in to the user_app and can be modified within to
perform user-desired DSP. The input ports related to I/Q samples used are:

[11:0] i_samples_in_#, q_samples_in_#

sample_clk_a

sample_valid_a_#

16 Sidekiq FPGA Development Manual

full_#

Sidekiq supports up to two I/Q channels. While sample_valid is high, each rising edge of the sample
clock delivers a new sample consisting of twelve bits each of I and Q data. Each channel must be
enabled by software before the sample_valid signal will go high.

The full flag is from the PCIe interface and is used to indicated that, while sample data flowing in may
be valid, there is no longer room in the PCIe buffer to contain them. This may be due to incorrect
PCIe signaling or may indicate the total data throughput on all active channels exceeds the PCIe data
transfer rate.

Two counters are passed in, which are passed through to the PCIe interface to software.

[63:0] frc_a_in, frc_sys_in

frc_a begins running when either channel associated with it is enabled (channels 0 or 1). They
continually increment as long as an associated clock is running. They can also be reset using a
software-programmable PPS based reset or by user logic. On a retune or sample rate change, this
clock will temporarily be lost.

frc_sys is a system counter that runs whenever the 40MHz reference clock is present. It is 64 bits
wide, and is normally driven by the 40MHz reference clock to ensure accurate timekeeping. It can be
reset using a software-programmable PPS based reset, or by user logic. This counter is continuous.

The following diagram illustrates the relationship between sample_clk, samples_valid, IQ data, and the
free-running counter. Note that samples are valid only when samples_valid is high, but the counter
increments as long as there is a valid clock.

Figure 3: Sample Timing Diagram

7.3.3 Outputs from user_app

The user app drives data into a FIFO within the pcie_block NGC. Though the data can be thought of
as a logical stream, each PCIe transfer consists of 1024 words of 32 bit length each. There are 1018
words of data and 6 words of metadata for 1024 total words. The first four words contain 64-bit
timestamps based on frc_a and frc_sys. The fifth word contains channel and system control
information. The sixth word is reserved for user definition.

Note that the PCIe bus works on 1018 data increments – until this size is reached in the FIFO, no
data will be transmitted. If smaller data blocks are needed, the user must pad the remaining data

Sidekiq FPGA Development Manual 17

sample_clk

samples_valid

i_sample I1 I2 I3 I4 I5 I6

q_sample Q1 Q2 Q3 Q4 Q5 Q6

frc n+0 +1 +2 +3 +4 +5 +6 +7 +8 +9

words until the 1018 data length is reached.

The following signals are used to drive the PCIe FIFO:

[31:0] fifo_din_#

fifo_wren_#

sample_clk_a_out,

[63:0] frc_a_out, frc_sys_out

[31:0] user_metadata_#

fifo_din_# is a 32 bit wide data bus containing the data to be transferred to software. In the stock app,
this contains unprocessed IQ data. Custom apps may process and place data in whatever format
desired on this bus. The fifo_wren_# signal must be driven high to push fifo_din_# data into the PCIe
block buffers. The write enable does not need to be continuous – it can be asserted and deasserted
as necessary to push the proper processed data through. If tied high, data will continuously be
streamed into the PCIe block

Channel A1 and A2 FIFO clocks are driven by sample_clk_#_out. This is normally tied to
sample_clk_#, but user applications may have other requirements.

If user blocks introduce a processing delay, the free-running counters can be modified to account for
the delay. Alternatively, frc_x_out can be tied directly to frc_x_in and software can account for delays.

The metadata_# registers are optional. They contain up to 32 bits of user-supplied data which is
embedded within each data block transferred over PCIe. This allows users to transfer extra data with
each set of 1018 samples. The metadata is latched in on each the first of the 1018 data words.

Figure 4: Sample User App to PCIe Diagram

7.3.4 user_app Tx Interface

The Tx user interface allows software to pass down either IQ or other encoded data for processing to
the FPGA to then be transmitted via the RF DAC interface. The DAC interface will be described first.

The interface to the RF chip is a 6 bit wide DDR bus, which means the clock driving it will run at twice
the sample clock rate in a mode with 1 receive and 1 transmit channel. On the receive side, the
data_clk is also twice the sample clock rate, but this is transparent to user_app as it receives a
sample_clock so each rising edge brings in a new IQ pair. On the transmit side, the faster clock is
used throughout the design.

18 Sidekiq FPGA Development Manual

sample_clk(i)

fifo_din[31:0](o) 0 1 2 3 4 5 400 401 402 403 404

fifo_wren(o)

metadata[31:0](o) meta1 meta2

data count (user) 0 1 2 3 4 1016 1017 0 1

The DAC interface can not be modified by the user. When the user_app signals tx_dac_en_out high,
the dac_if block will begin driving tx_rd_en_in as shown below, with a 50% duty cycle (due to the 2x
clk_tx_fb clock). I and Q data must be provided after each rising edge in order to provide
uninterrupted transmission of data.

In passthrough mode, where each 32 bit data word tx_din_# coming from PCIe contains a single I and
Q pair and no additional data to be transmitted, tx_dac_en_in/out and tx_rd_en_in/out can be wired
together to pass data straight from the PCIe FIFO to the dac_if block.

The PCIe interface can be modified if a user desires additional processing on transmit data. This
interface pulls data from the PCIe bus. To signal data is available, tx_dac_en_in goes high. On each
tx_rd_en_out strobe, data is pulled from the PCIe FIFO.

Note that if timestamp mode is used, the PCIe interface will not drive tx_dac_en_in high until the
proper timestamp is reached. In continuous mode, data is provided as soon as it is available in the
FIFO. Continuous/timestamp mode is set by software.

An example timing diagram is below for an app which would, in each 32 bit word over PCIe, contain
two IQ pairs of 8 bits each. Since each word contains two pairs, only one word is pulled from the PCIe
FIFO for each 2 IQ pairs sent out to the DAC_if.

Figure 5: Sample Tx Timing

Several other signals are available to assist in debug.

tx_ts_# indicates the timestamp (on the frc_# domain) that the transmit path is waiting on.

Sidekiq FPGA Development Manual 19

PCIe side - passthrough

clk_tx_fb(i)

tx_dac_en_in(i)

tx_rd_en_out(o)

tx_data[31:0](i) IQ0 IQ1 IQ3 IQ4 IQ5 IQ6 IQ7

PCIe side - half rate

clk_tx_fb(i)

tx_dac_en_in(i)

tx_rd_en_out(o)

tx_data[31:0](i) IQ1IQ2 IQ3IQ4 IQ4IQ5 IQ6IQ7

DAC interface side

clk_tx_fb(i)

tx_dac_en_out(o)

tx_rd_en_in(i)

tx_i[11:0](o) I0 I1 I3 I4 I5 I6

tx_q[11:0](o) Q0 Q1 Q3 Q4 Q5 Q6

tx_err_# indicates that a timestamp error has occurred, which is typically when data is not be able to
be pushed down over the PCIe bus fast enough to transmit a packet at the correct time.

tx_empty_# indicates the PCIe FIFO is empty.

7.3.5 user_reg_if

Within the user_app, user_reg_if provides an address space to drive or read status of user logic. As
the functionality of user_reg_if is the nearly identical to reg_if, please see Section 7.4 for information.
The code comments within user_reg_if serve to provdie a template for adding user registers.

7.4 reg_if / user_reg_if
reg_if and user_reg_if are Verilog file that provides a register map for all FPGA functions, starting at
address 0x8000 as referenced by software. Addresses below 0x8000 will be visible on the bus, but
should be ignored, as they deal with PCIe transactions beyond the scope of this document.

The R/W data bus is 32 bits wide, and 14 address lines are provided. The FPGA considers each 32
register a single address, while software addresses registers byte-wise. Logically, this results in the
software address's two least significant bits being truncated off. The first software address, b1000
0000 0000 0000 (x8000), is seen as b10 0000 0000 0000 by the 14 address lines on the FPGA. The
second address, b1000 0000 0000 0100 (x8004) is seen as b10 0000 0000 0001 by the FPGA, and
so on.

Within the module, bits [9:6] on the address bus are used to denote the logical bank of the register,
and bits [5:0] denote the address. This mapping results in the third nibble of the address from
software being the bank(i.e. x8000 is bank zero, x8100 is bank two, x8300 is bank three, and so on).

Banks 0-6 are used by the system, and it is recommended they not be modified, though PDK/SDK
customers do have the ability to do so. These banks are located in reg_if.v, which is instantiated in the
top level.

Bank 0 is a general purpose bank, and does not contain any clock domain crossing logic.

Banks 1-4 provide system control over each Rx/Tx channel, and are synced to the sample clock on
the channel domain.

Banks 5-6 are currently unused, but reserved.

Banks 7-9 are user register space, and are located with user_reg_if.v, which instantiated within
user_app.

Banks 8-15 are user register space, and are currently unused within user_reg_if.v. However, they are
available for customer use within the user register space along with Banks 7-9 mentioned above.

Eight read and four write registers are provided in the example design in the 8700 register space, and
are not synced to any specific clock domain. They are driven by the PCIe clock. The user may
rename, add, or delete as desired to interface with user logic. If further register customization is
desired, follow the template found in the source code. The provided read/write (software driven)
registers and read-only (FPGA driven) registers are:

20 Sidekiq FPGA Development Manual

SW Address (hex) FPGA Name R / R/W

0x8700 reg_7_0 R/W

0x8704 reg_7_1 R/W

0x8708 reg_7_2 R/W

0x870C reg_7_3 R/W

0x8710 reg_7_4 R

0x8714 reg_7_5 R

0x8718 reg_7_6 R

0x871C reg_7_7 R

Table 3: User Registers

Please note that bit zero of x8708 is currently used to illustrate how a timestamp reset can be driven
up to the top level via custom logic with a user_app register bit in the user_app. The following line of
RTL is used for this in user_app.v:

 assign timestamp_rst = user_reg_2_w[0];

If you do not want this functionality and would like to be able to write to 0x8708 without it affecting the
timestamps, replace the line of code in user_app.v with the following:

 assign timestamp_rst = 1'b0;

Banks 8 is synced to sample_clk_a via a FIFO. The write side of the FIFO is driven by the PCIe
interface, and the read out from the FIFO is driven by the respective sample_clk. This gives a block of
registers which can be used in sync-sensitive designs. It is recommended to only add registers and
not modify the FIFO sync portion of the code. A template for adding registers is provided within the
comments of user_reg_if.v.

If custom clock syncs are desired, it is suggested to use the 8700 register space, and sync the desired
registers individually.

7.5 pcie_block
In mPCIe versions of Sidekiq, the pcie_block is contained in a static netlist. Due to changes in the
Xilinx toolset and improvements made to the code, the M.2 and M.2 Stretch project allows the end
user to customize the size and number of the transmit FIFOs in order to conserve FPGA resources,
primarily BRAM. There are 150 BRAM(18k each) available. In a fully populated design, over 1/3 the
BRAM resources are dedicated to transmit. If sample rates are low, or multiple transmit channels are
not needed, configure the IP to best suit your design. If transmit underflows are reported in software,
the size of the FIFO will need to be increased.

For M.2, M.2 USB, and M.2 Stretch, simply modify the verilog parameter settings that affect the

Sidekiq FPGA Development Manual 21

pcie_block instance in sidekiq_m2_top.v. These parameters are defined as top level parameters in
sidekiq_m2_top.v and should be modifed at that level. As such, the build tcl scripts could also be
modified to change the top level parameter settings for your particular build instead of modifying these
parameters at the top of sidekiq_m2_top.v

The number of receive channels can be reconfigured to a single channel, saving 5 BRAM (18k) in the
process. Valid number of receive channels is “10” or “01”. A value of “00” or no receive path is not
currently supported. It is suggested to only remove the second Rx channel if the additional BRAM
savings is necessary to support a user design.

Use the following table to configure the transmit FIFOs – other parameters should not be changed to
avoid build issues.

#Channels / FIFO
Size

Num Tx Tx FIFO Size Tx Capable BRAM (18k) used

2 x 16K “10” “10” “1” 56

2 x 8K “10” “01” “1” 28

1 x 16K “01” “10” “1” 28

1 x 8K “01” “01” “1” 14

No Tx “00” “00” “0” 0

Table 4: Tx FIFO Customization

7.6 timestamp_block
The timestamp_block.v is a Verilog file which handles driving and resetting the free-running counters
(FRC) which serve to timestamp samples. It also controls signaling to start and stop
receipt/transmission of data based on a PPS signal.

Time syncing multiple units is handled primarily by software; see the SDK documentation [2] for more
information.

As it relates to the FPGA, the user_app can drive a reset, which will clear all free-running counters for
as long as it is held high.

There are three counters present: frc_a, frc_b, and frc_sys. frc_a is driven by sample_clk_a, frc_b is
dirven by sample_clk_b, and frc_sys is driven by the 40MHz reference clock. As long as reset is not
held, these counters will increment as long as there is a clock present.

7.7 gpio_tristate
The gpio_tristate_bist.v block is a block used to implement the functionality of various GPIO lines. It is
recommended to not modify this block.

22 Sidekiq FPGA Development Manual

8 Building Sidekiq mPCIe and Sidekiq M.2
There are two steps to follow when building custom designs for the Sidekiq platform.

1. Create the user_app

2. Build the project and generate the bitstream

Each of these will be addressed in this section.

8.1 Building a user_app for mPCIe and M.2
The reference design can be built out of the box with a standard user_app named user_app.v because
raw I/Q samples pass through unmodified before being sent over PCIe. The user_app within the
reference design can be used as a model for building custom user_apps. This section provides insight
into building the included design, as well as how to generate a custom design to work with the
included build scripts. The PDK user may customize the build flow to better match their existing
processes if desired.

8.1.1 Reference Design for mPCIe

The user_app folder can be found in the root directory of the Sidekiq project file. This contains
several files.

user_app.v contains the top level file. In this design, I/Q samples, clocks, and timestamp counters are
passed straight through to the PCIe FIFOs.

user_reg_if.v contains read and write user registers, as discussed in Table 3.

user_app_rx.v and user_app_tx.v contain the receive and transmit processing blocks. These can be
instantiated per-channel, if different apps are desired on different channels.

user_reg_bank_# contains a generated bank of registers, which can be modifed to interact and
control/read status of a custom user_app.

user_app_sidekiq.ucf (user_app_sidekiq.xdc for M.2) is a constraint file which contains timing
constraints for the clocks coming in from the AD9361 chips on mPCIE. On M.2, timing closure is
easier to meet and the constraints are fixed as the max AD9361 rate.

8.1.2 Reference Design for M.2

The user_app RTL can be found in the hdl directory of the reference design. This contains several
files.

hdl/user_app.v contains the top level file. In this design, I/Q samples, clocks, and timestamp counters
are passed straight through to the PCIe FIFOs.

hdl/auto_gen/user_reg_if.v contains read and write user registers, as discussed in Table 3.

hdl/user_app_rx.v and hdl/user_app_tx.v contain the receive and transmit processing blocks. These
can be instantiated per-channel, if different apps are desired on different channels.

hdl/auto_gen/user_reg_bank_# contains a generated bank of registers, which can be modifed to
interact and control/read status of a custom user_app.

Sidekiq FPGA Development Manual 23

constraints/user_app_sidekiq.xdc is a constraint file which contains timing constraints for the clocks
coming in from the AD9361 chips on mPCIE. On M.2, timing closure is easier to meet and the
constraints are fixed as the max AD9361 rate.

8.1.3 Custom user_apps for mPCIe

To create a custom app, first create a copy of the user_app directory. While the new directory should
have a new name, the user_app files should keep their names.

Create your design in user_app.v. The user has full use of Xilinx components, such as BRAM, DSP
blocks, and PLLs. Most designs will not need to modify the user_app top level ports. If the top level
ports are modified, /ref_design/hdl/sidekiq.top or sidekiq_m2_top will need to be modified so the
instantiation of user_app.v will match the user's design.

Modify the build script, located in /ref_design/par/sidekiq/sidekiq_build_pdk.tcl for mPCIE,
/ref_design/par/sidekiq/sidekiq_usb_build_pdk.tcl for mPCIe USB, or vivado_build.tcl in the top level
directory for M.2, to include any extra submodules or IP that your design includes. If you do not
include all necessary modules, the build will fail with an error indicating what needs to be added to the
file.

If your design includes custom clocking that creates a faster clock to process samples, it is likely you
will need to modify the user_app.ucf (or user_app.xdc for M.2) file to reflect your changes. The default
sample clock constraint is 62 MHz, which reflects the max throughput which can be transferred via
PCIe. If the user design does not require these faster sample rates, it is recommended to reduce this
constraint to ease timing closure.

8.1.4 Custom user_apps for M.2

To create a custom app, first modify the user_app related files as necessary.

Create your design in hdl/user_app.v. The user has full use of Xilinx components, such as BRAM,
DSP blocks, and PLLs. Most designs will not need to modify the user_app top level ports. If the top
level ports are modified, hdl/sidekiq_m2_top will need to be modified so the instantiation of user_app.v
will match the user's design.

Modify the build script vivado_build.tcl in the top level directory for to include any extra submodules or
IP that your design includes. If you do not include all necessary modules, the build will fail with an
error indicating what needs to be added to the file.

If your design includes custom clocking that creates a faster clock to process samples, it is likely you
will need to modify constraints/user_app.xdc to reflect your changes. The default sample clock
constraint is 62 MHz, which reflects the max throughput which can be transferred via PCIe. If the user
design does not require these faster sample rates, it is recommended to reduce this constraint to ease
timing closure.

8.2 Building the project and bitstream for mPCIe and M.2
The Sidekiq PDK reference design should be used as the starting point for building custom FPGA
bitstreams targeting the Sidekiq. It is strongly recommended to first build the design without
modification to ensure that the build environment is suitable for generating valid bitstreams.
Furthermore, a suitable version control system should be used to facilitate development. A Git flow is
already built into the included build script; if Git is not used, the git hash embedded in the bitstream will

24 Sidekiq FPGA Development Manual

be all zeros.

The Xilinx tools must be installed and properly configured in order generate a bitstream.

The Xilinx tools can be run in batch mode on the command line, or in GUI mode. There are several
parameters that are passed in with batch mode that are not automatically configured in GUI mode
which help identify bitstreams.

The first is the the Git hash; if Git version control is used, the top 7 digits of the current git hash, along
with a clean/dirty flag in the most significant nibble, will be placed into address 0x8000 of the register
map.

The second is the build date. The current date will be placed into address 0x8004.

There is a third register that contains the PDK version number at address 0x8008.

The user can modify the build script to pass in additional parameters to configure their own designs.

Once the build script is run, subsequent GUI builds will retain the parameters used in the previous
batch mode build. Be aware that GUI builds may have inaccurate version numbers and build dates.

8.2.1 Linux

8.2.1.1 Sidekiq mPCIe (and USB)

A build script written in Tcl is provided to allow building of bitstreams through the command line. The
reference design build script and project file are located in:

/ref_design/par/sidekiq/

To run in batch mode on the command line, run the following command in the directory with the build
script to build for a PCIe-based host:

$ xtclsh sidekiq_build_pdk.tcl rebuild_project

or to build on USB, run:

$ xtclsh sidekiq_usb_build_pdk.tcl rebuild_project

This will create and set up a project, rebuild all of the required Xilinx cores, and perform the stages of
synthesis, implementation, and bitstream generation using Xilinx ISE. The output bitstream file named
sidekiq_top.bin will be generated.

For users who prefer to use a GUI, the provided sidekiq_top.xise will allow the project to be imported
into the ISE application (but take note of the version number caution already mentioned above). This
sidekiq_top.xise project file is for the standard mPCIe build. When first opening, ISE will look for the
IP core .xise project files and will not find them because they need to be regenerated. This can easily
be done by following the instructions provided by Xilinx here:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cor
es.htm

(In short, click on the Spartan-6 device entry in the Hierarchy pane, then in the Processes pane,
expand “Design Utilities”. Right-click “Regenerate All Cores” process, select “Process Properties”, set
the “Regenerate Core” property, and double-click “Regenerate All Cores”).

ISE version 14.7 is used for building all releases.

Sidekiq FPGA Development Manual 25

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cores.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cores.htm

8.2.1.2 Sidekiq M.2 (and USB)

A build script written in Tcl is provided to allow building of bitstreams through the command line.

To run in batch mode on the command line, run the following command in the top level directory with
the build script:

$ vivado -mode batch -source vivado_build.tcl

This will create and set up a project, rebuild all of the required Xilinx cores, and perform the stages of
synthesis, implementation, and bitstream generation using Vivado. A bitstream will be output in the
top level directory, which will be named sidekiq_m2_pdk.bit (sidekiq_m2_usb_pdk.bit for the usb
reference design).

For release 3.1 through 3.3, Vivado version 2015.2 is required. For 3.3 through 3.12.1, Vivado version
2016.4 is required. For all releases including and after 3.13.0, Vivado version 2018.3 is required.

8.2.2 Windows

8.2.2.1 Sidekiq mPCIe (and USB)

The xtclsh command on Windows is easiest to run through the ISE GUI. The tools can be run via
command line in Windows, but ISE configuration is outside the scope of this document.

In the View -> Panels menu of ISE, Tcl console must be checked. In the Tcl Console window, run

> xtclsh sidekiq_build_pdk.tcl rebuild_project

or to build on USB, run:

$ xtclsh sidekiq_usb_build_pdk.tcl rebuild_project

For users who prefer to use a GUI, the provided sidekiq_top.xise will import the project in the ISE
application (but take note of the version number caution already mentioned above). This
sidekiq_top.xise project file is for the standard mPCIe build. When first opening, ISE will look for the
IP core .xise project files and will not find them because they need to be regenerated. This can easily
be done by following the instructions provided by Xilinx here:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cor
es.htm

(In short, click on the Spartan-6 device entry in the Hierarchy pane, then in the Processes pane,
expand “Design Utilities”. Right-click “Regenerate All Cores” process, select “Process Properties”, set
the “Regenerate Core” property, and double-click “Regenerate All Cores”).

8.2.2.2 Sidekiq M.2 (and USB)

In the Vivado GUI, in the Tcl shell (Window → Tcl Console to open the shell), in the top level directory,
run:

 > source vivado_build.tcl

26 Sidekiq FPGA Development Manual

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cores.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pp_p_process_regenerate_all_cores.htm

9 Programming the Sidekiq mPCie and Sidekiq M.2 Flash

Note that this section pertains only to Sidekiq mPCIe and Sidekiq M.2. For more detailed information
about programming the PR capable M.2 Stretch, see the sections below.

The generated binary files can be loaded onto the hardware using software utilities run from the host
system.

In the /test_apps/ directory, prog_fpga can be used to push the sidekiq_top.bin (for mPCIe) or
sidekiq_m2_pdk.bit (for M.2) file down to the unit. No reboot is necessary after programming. Run
prog_fpga with the –help argument to see usage. When programmed this way, a hard reboot will
remove the image and the image stored on flash will be used.

The on-board flash memory can be programmed to set the Sidekiq to a specific image at boot, and
reprogram the FPGA with that image automatically when power is restored. To program the flash
memory, run store_user_fpga on the sidekiq_top.bin file for mPCIE based Sidekiq, or
sidekiq_m2_pdk.bit for M.2 based Sidekiqs.

Sidekiq FPGA Development Manual 27

10 Building Sidekiq M.2 Stretch
There are three steps to follow in building custom designs for the Sidekiq M.2 Stretch platform.

1. Determine which build flow to use, SM or/and RM

a. Static Module (SM) refers to sidekiq_m2s_pdk_static_vx_x_x.tar.gz

b. Reconfigureable Module (RM) refers to sidekiq_m2s_pr_pdk_vx_x_x.tar.gz

2. Create your modified user_app, and replace existing user_app files in the RM or/and SM designs

3. Build the project and generate the bitstream

10.1 Terminology Used for M.2 Stretch
The following terminology applies when discussing the Sidekiq M.2 Stretch build and programming
procedures over the new few sections.

1. PR = Partial Reconfiguration

2. SM = Static Module

3. RM = Reconfigureable Module (in this case, this is user_app)

4. The SM build flow relates to the following provided reference design (where vx_x_x is version):

sidekiq_m2s_pdk_static_vx_x_x.tar.gz

5. The RM build flow relates to the following provided reference design (where vx_x_x is version):

sidekiq_m2s_pr_pdk_vx_x_x.tar.gz

6. When the bitstreams are referenced with a version number (i.e. vx_x_x), these are referring to the
stock bitstreams that have been provided as part of the reference design. For example:

sidekiq_m2s_pr_pdk_${date}_${git_hash}_vx_x_x.bin

7. When the bitstreams are NOT referenced with a version number (i.e. vx_x_x), these are referring to
bitstreams that have been generated by the user. For example:

sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin

10.2 Building a user_app for M.2 Stretch
The reference design can be built out of the box with a standard user_app named user_app.v because
raw I/Q samples pass through unmodified before being sent over PCIe. The user_app within the
reference design can be used as a model for building custom user_apps. This section provides insight
into building the included design, as well as how to generate a custom design to work with the
included build scripts. The PDK user may customize the build flow to better match their existing
processes if desired.

28 Sidekiq FPGA Development Manual

10.2.1 Reference Design for M.2 Stretch

The user_app files can be found in the hdl directory in either the RM or SM reference design after
uncompressing the respective tar file. The user_app files contained in each are the same. Once you
have your custom user_app changes ready to go, you will need to replace the user_app files in the
RM reference design or the SM reference design, or possibly in both locations, depending on which
build flow you will be using. See the “Selecting the RM or SM Build Flow for M.2 Stretch” section
below for determining which build flow you will be using.

user_app.v (located in the hdl folder) contains the top level file. In this design, I/Q samples, clocks,
and timestamp counters are passed straight through to the PCIe FIFOs.

user_reg_if.v (located in the hdl/auto_gen folder) contains read and write user registers, as discussed
in Table 3.

user_app_rx.v and user_app_tx.v (located in the hdl folder) contains the receive and transmit
processing blocks. These can be instantiated per-channel, if different apps are desired on different
channels.

user_reg_bank_#.v (located in the hdl/auto_gen folder) contains a generated bank of registers, which
can be modifed to interact and control/read status of a custom user_app.

user_app_sidekiq.xdc (located in the constraints folder) is a constraint file which contains timing
constraints for the clocks coming in from the AD9361. On M.2 Stretch, timing closure is easier to meet
and the constraints are fixed at the max AD9361 rate.

10.2.2 Custom user_apps for M.2 Stretch

To create a custom app, simply modify any of the user_app related files mentioned above.

Create your design in user_app.v. The user has full use of Xilinx components, such as BRAM, DSP
blocks, and PLLs. Most designs will not need to modify the user_app top level ports. If the top level
ports are modified, sidekiq_m2_top.v will need to be modified in the SM so the instantiation of
user_app.v will match the user's modified user_app design. Also, once the sidekiq_m2_top.v is
modified, this will require the rebuild of the SM (see below section for more information on this).

Modify the build script vivado_build.tcl for the RM or/and vivado_build_route_place_synth.tcl for the
SM based on your chosen flow to include any extra sub-modules or IP that your design might need to
include. If you do not include all necessary modules, the build will fail with an error indicating what
needs to be added to the file.

If your design includes custom clocking that creates a faster clock to process samples, it is likely you
will need to modify the user_app.xdc file to reflect your changes. The default sample clock constraint
is 62 MHz, which reflects the max throughput which can be transferred via PCIe. If the user design
does not require these faster sample rates, it is recommended to reduce this constraint to ease timing
closure.

10.3 Building the project and bitstream for M.2 Stretch
The Sidekiq M.2 Stretch PDK reference design should be used as the starting point for building
custom FPGA bitstreams targeting the Sidekiq M.2 Stretch. It is strongly recommended to first build
the design without modification to ensure that the build environment is suitable for generating valid

Sidekiq FPGA Development Manual 29

bitstreams. Furthermore, a suitable version control system should be used to facilitate development. A
Git flow is already built into the included build script; if Git is not used, the git hash embedded in the
bitstream will be all zeros.

The Xilinx tools must be installed and properly configured in order generate a bitstream.

The Xilinx tools can be run in batch mode on the command line, or in GUI mode. There are several
parameters that are passed in with batch mode that help identify bitstreams.

The first is the the Git hash; if Git version control is used, the top 7 digits of the current git hash, along
with a clean/dirty flag in the most significant nibble, will be placed into address 0x8000 of the register
map.

The second is the build date. The current date will be placed into address 0x8004.

There is a third register that contains the PDK version number at address 0x8008.

The user can modify the build script to pass in additional parameters to configure their own designs.

10.4 Selecting the SM or RM (Or Both) Build Flow for M.2 Stretch
The fact that M.2 Stretch supports Partial Reconfiguration (PR) leads to several options that the user
has in how to build the bitstreams. For M.2 Stretch, the user_app is a re-programmable module (RM).
The rest of the design is considered to be the static module (SM). This is the reason that the Sidekiq
M.2 Stretch PDK contains two different build reference designs. The SM build flow uses the
sidekiq_m2s_pdk_static_vx_x_x.tar.gz reference design. The SM includes the full FPGA. However, at
the end of the SM build process, user_app is replaced with an empty black box. The SM build flow
then creates a sidekiq_m2s_pdk_static.dcp Vivado file that is used during the RM build process. The
RM build flow uses the sidekiq_m2s_pr_pdk_vx_x_x.tar.gz reference design.

10.4.1 When to use the SM only build for M.2 Stretch

The following must all be true to use the SM build (sidekiq_m2s_pdk_static_vx_x_x.tar.gz) only:

1. Do not care about PR

2. Do not care if custom user_app is stored on flash

3. Want to have as many resources as possible available for your custom user_app

If the above conditions are true, then you can use the SM only build flow. You can completely ignore
the RM reference design (sidekiq_m2s_pr_pdk_vx_x_x.tar.gz). However, to use this flow, you will
need to make a few minor changes to the vivado_build_route_place_synth.tcl script located in the SM
reference design. This script is set up assuming that it will be used with a combined SM/RM build flow.
So, the fact that the SM build will only be used, will require a few modifications that will be described in
the next section.

10.4.1.1 Building M.2 Stretch with the SM only build flow

Vivado version 2018.3 is currently required to build Sidekiq M.2 Stretch.

30 Sidekiq FPGA Development Manual

A build script written in Tcl is provided to allow building of bitstreams through the command line. It is
included in the SM reference design (sidekiq_m2s_pdk_static_vx_x_x.tar.gz), and is called
vivado_build_route_place_synth.tcl. To build with the SM only build flow, make the following changes
to this script:

1. Remove “-verilog_define BUILD_WITH_PR=1” from the synth_design command

2. Comment out the line: read_xdc [file normalize "./constraints/pr_settings.xdc"]

3. Comment out the line: update_design -cell user_app -black_box

4. Comment out the line: lock_design -level routing

5. Replace PrYes, with PrNo in the set argv commad

6. Replace KeepBitStreamsNo, with KeepBitStreamsYes in the set argv commad

To run in batch mode on the command line (after you have copied your user_app changes to the SM
reference design, and updated the .tcl with any new RTL, modules, or constraints), run the following
command in the directory with the build script after the above changes have been made:

$ vivado -mode batch -source vivado_build_route_place_synth.tcl

This will run the build in non project mode, rebuild all of the required Xilinx cores, and perform the
stages of synthesis, implementation, and bitstream generation using Vivado. One bitstream will be
output in the current working directory, sidekiq_m2s_pdk_static_${date}_${git_hash}.bin. Use this
bitstream with the store_fpga app to store this image to flash. This is a full image that contains the
entire design. The user_app in this case is not a RM, so this is a traditional type of bitstream.

10.4.1.2 Programming M.2 Stretch with the SM only build flow

There is only one option when using the SM only build flow:

1. No PR (i.e. traditional style of bitstream):

a. use store_user_fpga (this will be a complete fpga including a non-RM user_app):

sidekiq_m2s_pdk_static_${date}_${git_hash}.bin

10.4.2 When to use the RM build only for M.2 Stretch

The following must all be true to use the RM build (sidekiq_m2s_pr_pdk_vx_x_x.tar.gz) only:

1. Want PR and/or Do not want custom user_app stored in flash

1. All changes will be contained inside user_app.v AND no port changes on user_app.v

2. Having less resources available for your custom user_app is o.k.

The RM build flow (sidekiq_m2s_pr_pdk_vx_x_x.tar.gz) should be used if all of your changes will be

Sidekiq FPGA Development Manual 31

contained inside user_app.v and you do not have any port level modifications that need to be made to
user_app.v for your design. This method will use the pre-built SM, so there is no need to recreate it by
building it with the SM flow. In this case, the SM design flow (sidekiq_m2s_pdk_static_vx_x_x.tar.gz) is
not needed at all and can be completely ignored.

Another thing to consider when using the RM only flow, is that you may have less resources available
for your user_app design with this flow. The RM has to be contained to specific layout resources
indicated with the user_app pblock in vivado. When not using the PR flow, the user_app resources are
free to be placed anywhere on the FPGA which typically allows it to have more resources available for
use.

With this flow, if you so choose, you can create your own multiple custom versions of user_app. These
can then be used to partial reconfigure the user_app for each implementation (one at a time) without
reprogramming the entire FPGA (and without losing the PCIe bus during the partial reconfiguration of
the RM module).

Also with this flow, if you do not want your custom user_app to be written to flash, simply write the
stock .bin file provided with this release (sidekiq_m2s_pr_pdk_${date}_${git_hash}_vx_x_x.bin) using
store_fpga. Then, use prog_fpga with your new RM partial .bit file (sidekiq_m2s_pr_pdk_${date}_$
{git_hash}_pblock_user_app_partial.bit). This way, your custom user_app will never be stored to flash
and will be gone from the FPGA when power is lost.

10.4.2.1 Building M.2 Stretch with the RM build flow

Vivado version 2018.3 is currently required to build Sidekiq M.2 Stretch.

A build script written in Tcl is provided to allow building of bitstreams through the command line. It is
included in the RM reference design (sidekiq_m2s_pr_pdk_v3_12_1.tar.gz), and is called
vivado_build.tcl.

To run in batch mode on the command line (after you have copied your user_app changes to the RM
reference design, and updated the .tcl with any new RTL, modules, or constraints), run the following
command in the directory with the build script:

$ vivado -mode batch -source vivado_build.tcl

This will run the build in non project mode, rebuild all of the required Xilinx cores, and perform the
stages of synthesis, implementation, and bitstream generation using Vivado. two bitstreams will be
output in the current working directory, sidekiq_m2s_pr_pdk_${project_date}_${git_hash}.bin, and
sidekiq_m2s_pr_pdk_${project_date}_${git_hash}_pblock_user_app_partial.bit.

Use sidekiq_m2s_pr_pdk_${project_date}_${git_hash}.bin with the store_fpga app to store this image
to flash. This is a full image that contains the entire design including the SM and your version of the
user_app RM module. Once the device is booted after the flash has been written, the fpga will be fully
functional. At this point, you can use sidekiq_m2s_pr_pdk_${project_date}_$
{git_hash}_pblock_user_app_partial.bit with the prog_fpga app to do a partial reconfiguration on the
user_app RM module. If you have several versions of user_app, they can all be loaded this way.
Simply use prog_fpga to start using a different version of user_app verses that one that is currently
programmed into the FPGA.

32 Sidekiq FPGA Development Manual

10.4.2.2 Programming M.2 Stretch with the RM build flow only

Choose the scenario that is best for your project:

1. Do not care about PR

a. use store_user_fpga:

sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin

2. Want to take advantage of PR

a. use store_user_fpga (must always do this first):

sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin

b. use prog_fpga (this step not necessary if you only have one RM module):

sidekiq_m2s_pr_pdk_${date}_${git_hash}_pblock_user_app_partial.bit

3. Want to take advantage of PR or/and Do not want custom user_app stored in flash

a. use store_user_fpga (must always do this first, this is .bin provided with reference design):

sidekiq_m2s_pr_pdk_${date}_${git_hash}_vx_x_x.bin

b. use prog_fpga (this will be your custom user_app RM:

sidekiq_m2s_pr_pdk_${date}_${git_hash}_pblock_user_app_partial.bit

10.4.3 When To Use A Combined SM and RM Build Flow For M.2 Stretch

The following must all be true to use the combined SM and RM build flow:

1. Want PR and/or Do not want custom user_app stored in flash

1. All changes will NOT be contained inside user_app.v and/or port changes on user_app.v

2. Having less resources available for your custom user_app is o.k.

The main motive behind using a combined SM/RM flow is that PR is needed, but there will be changes
outside of user_app.v or on the user_app.v ports. In this case, you will need to copy your user_app
changes to both the SM and RM reference designs. Then, the SM build will be run which will create a
static .dcp. This .dcp will then need to be copied to the RM reference design before it is run. The
details for this are contained in the next section.

10.4.3.1 Building M.2 Stretch with the combined SM and RM build flow

Vivado version 2018.3 is currently required to build Sidekiq M.2 Stretch.

A build script written in Tcl is provided to allow building of the bitstreams through the command line in

Sidekiq FPGA Development Manual 33

each of the SM (sidekiq_m2s_pdk_static_vx_x_x.tar.gz) and RM (sidekiq_m2s_pr_pdk_vx_x_x.tar.gz)
reference designs.

Note that you will need to extract the two .tar.gz reference designs to two different working directories.
Make sure that you have the changes needed for the custom user_app copied to both the SM and the
RM reference designs.

After this is complete, the SM needs to be built. To run in batch mode on the command line, run the
following command in the directory with the build script. Note that if you will be using programming
option 3. described in the next section, you will need to change the KeepBitStreamsNo, with
KeepBitStreamsYes in the set argv commad at the bottom of this tcl scipt.

$ vivado -mode batch -source vivado_build_route_place_synth.tcl

This will run the build in non project mode, rebuild all of the required Xilinx cores, and perform the
stages of synthesis, implementation, and bitstream generation using Vivado. two bitstreams will be
output in the current working directory, sidekiq_m2s_pdk_static_${date}_${git_hash}.bin, and
sidekiq_m2s_pdk_static_${date}_${git_hash}_pblock_user_app_partial.bit. For information on how to
handle the bitstreams, see the next section.

This run will also produce a sidekiq_m2s_pdk_static.dcp vivado file (note that this file is written to the
directory directly above your current SM run directory. If you would like to change the location where
this file is written, modify the following command in the .tcl file, “write_checkpoint -force
../sidekiq_m2s_pdk_static.dcp”). This generated file needs to be copied to the RM reference design
(the separate working directory where you uncompressed the RM reference design and added your
custom user_app changes) and replace the existing file located in the RM reference design at:

netlists/sidekiq_m2s_pdk_static.dcp

Now, the RM is ready to be built. If you would like the new git_hash and date values from the SM build
to be applied to the RM build output file naming conventions, update the contents of
README_GIT_HASH_OF_STATIC_BUILD and README_BUILD_DATE_OF_STATIC_BUILD in the
RM build with the values from README_GIT_HASH_OF_LAST_BUILD and
README_BUILD_DATE_OF_LAST_BUILD from the SM build. Note, that the RM bitstream will
always contain the git_hash and date from the SM build as this logic is implemented in the SM. So
updating as described above, only affects the file name naming conventions of the RM build outputs.

Then, to run in batch mode on the command line, run the following command in the directory with the
build script:

$ vivado -mode batch -source vivado_build.tcl

This will run the build in non project mode, rebuild all of the required Xilinx cores, and perform the
stages of synthesis, implementation, and bitstream generation using Vivado. two bitstreams will be
output in the current working directory, sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin, and
sidekiq_m2s_pr_pdk_${date}_${git_hash}_pblock_user_app_partial.bit. For information on how to
handle the bitstreams, see the next section. Please note the the following command at the bottom of
the scripts/sidekiq_m2s_pr_post_build_hook.tcl tcl script: “pr_verify

34 Sidekiq FPGA Development Manual

./netlists/sidekiq_m2s_pdk_static.dcp ./sidekiq_m2s_pr_pdk.dcp”. This checks that the bitstreams
created are PR compatible. If successful, you should see the following message in the vivado.log file
after this command has been run: “INFO: [Vivado 12-3253] PR_VERIFY: check points
./netlists/sidekiq_m2s_pdk_static.dcp and ./sidekiq_m2s_pr_pdk.dcp are compatible”

10.4.3.2 Programming M.2 Stretch with the combined SM and RM build flow

Choose the scenario that is best for your project:

1. Do not care about PR

a. use store_user_fpga:

sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin

2. Want to take advantage of PR

a. use store_user_fpga (must always do this first):

sidekiq_m2s_pr_pdk_${date}_${git_hash}.bin

b. use prog_fpga (this step not necessary if you only have one RM module):

sidekiq_m2s_pr_pdk_${date}_${git_hash}_pblock_user_app_partial.bit

3. Want to take advantage of PR or/and Do not want custom user_app stored in flash

a. use store_user_fpga (must always do this first, includes empty box for the user_app RM):

sidekiq_m2s_pdk_static_${date}_${git_hash}.bin

b. use prog_fpga (to load custom user_app RM module):

sidekiq_m2s_pr_pdk_${date}_${git_hash}_pblock_user_app_partial.bit

c. use prog_fpga (to load an empty user_app RM module):

sidekiq_m2s_pdk_static_${date}_${git_hash}_pblock_user_app_partial.bit

Sidekiq FPGA Development Manual 35

11 Testing the Bitstream

The /test_apps/ directory contains several apps that can be scripted to run a regression test. As each
user app will perform differently, the user may need to modify the source of each app to properly test
their bitstream. See the SDK documentation [2] for descriptions of the provided test apps. Each app
can be run with no parameters to view proper usage.

36 Sidekiq FPGA Development Manual

12 Using JTAG for Debug

A JTAG port is provided to facilitate debug for PDK customers. Xilinx's Chipscope application can be
used to view internal FPGA signaling. Full Chipscope use is beyond the scope of this document. Both
Xilinx and Digilent type programmers can be connected to the JTAG board. On these platforms, it is
not intended to use JTAG to program a bitstream, as this will disrupt operation on the PCIe bus. Use
the provide prog_fpga application to program new bitstreams.

Sidekiq FPGA Development Manual 37

	1 About this Document
	2 Legal Considerations
	3 Proper Care and Handling
	4 Introduction
	5 References
	6 Terms and Definitions
	7 FPGA Reference Design
	7.1 Overview
	7.2 Top Level
	7.3 user_app
	7.3.1 user_app Signals
	7.3.2 Rx Path Inputs to user_app
	7.3.3 Outputs from user_app
	7.3.4 user_app Tx Interface
	7.3.5 user_reg_if

	7.4 reg_if / user_reg_if
	7.5 pcie_block
	7.6 timestamp_block
	7.7 gpio_tristate

	8 Building Sidekiq mPCIe and Sidekiq M.2
	8.1 Building a user_app for mPCIe and M.2
	8.1.1 Reference Design for mPCIe
	8.1.2 Reference Design for M.2
	8.1.3 Custom user_apps for mPCIe
	8.1.4 Custom user_apps for M.2

	8.2 Building the project and bitstream for mPCIe and M.2
	8.2.1 Linux
	8.2.1.1 Sidekiq mPCIe (and USB)
	8.2.1.2 Sidekiq M.2 (and USB)

	8.2.2 Windows
	8.2.2.1 Sidekiq mPCIe (and USB)
	8.2.2.2 Sidekiq M.2 (and USB)

	9 Programming the Sidekiq mPCie and Sidekiq M.2 Flash
	10 Building Sidekiq M.2 Stretch
	10.1 Terminology Used for M.2 Stretch
	10.2 Building a user_app for M.2 Stretch
	10.2.1 Reference Design for M.2 Stretch
	10.2.2 Custom user_apps for M.2 Stretch

	10.3 Building the project and bitstream for M.2 Stretch
	10.4 Selecting the SM or RM (Or Both) Build Flow for M.2 Stretch
	10.4.1 When to use the SM only build for M.2 Stretch
	10.4.1.1 Building M.2 Stretch with the SM only build flow
	10.4.1.2 Programming M.2 Stretch with the SM only build flow

	10.4.2 When to use the RM build only for M.2 Stretch
	10.4.2.1 Building M.2 Stretch with the RM build flow
	10.4.2.2 Programming M.2 Stretch with the RM build flow only

	10.4.3 When To Use A Combined SM and RM Build Flow For M.2 Stretch
	10.4.3.1 Building M.2 Stretch with the combined SM and RM build flow
	10.4.3.2 Programming M.2 Stretch with the combined SM and RM build flow

	11 Testing the Bitstream
	12 Using JTAG for Debug

